Power Series |
A power series in \(x\) about \(x_0\) is a series of the form \[\sum_{n=0}^{\infty}a_n(x-x_0)^n=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots,\] where \(a_0,a_1,\ldots\) are real numbers. If \(x_0=0\), it becomes \[\sum_{n=0}^{\infty}a_n x^n=a_0+a_1 x+a_2 x^2+\cdots\] Example.
Convergence: Power series \(\sum_{n=0}^{\infty}a_n(x-x_0)^n\) converges to \(L\) at \(x=c\) if
\[\lim_{n\to \infty}\sum_{k=0}^{n}a_k(c-x_0)^k=L,\]
and we write \(\sum_{n=0}^{\infty}a_n(c-x_0)^n=L\). It diverges if it does not converge.
Example.
Radius of Convergence: For a power series \(\sum_{n=0}^{\infty}a_n(x-x_0)^n\), there is number \(R\geq 0\),
possibly \(R=\infty\), such that it converges for each \(x\) in \((x_0-R,x_0+R)\), i.e., \(|x-x_0| < R\), and diverges for
each \(x\) in \((-\infty,x_0-R)\cup(x_0+R,\infty)\), i.e., \(|x-x_0| > R\). This \(R\) is called the
radius of convergence of the power series.
Note that the power series may converge or diverge at \(x_0-R\) and \(x_0+R\). So the interval of convergence would be one
of \((x_0-R,x_0+R),\; (x_0-R,x_0+R],\; [x_0-R,x_0+R)\), and \([x_0-R,x_0+R]\). Also note that \(R=\infty\) if
and only if the power series converges for all \(x\).
Ratio Test: For a power series \(\sum_{n=0}^{\infty}a_n(x-x_0)^n\), suppose
\[L=\lim_{n\to \infty}\;\left\vert\frac{a_{n+1}(x-x_0)^{n+1}}{a_n(x-x_0)^n}\right\vert=|x-x_0|\lim_{n\to \infty}\;\left\vert\frac{a_{n+1}}{a_n}\right\vert\;.\]
The power series converges if \(L < 1\), diverges if \(L > 1\) and may converge or diverge if \(L=1\).
Also \(R=1/\displaystyle\lim_{n\to \infty}\;\left\vert\frac{a_{n+1}}{a_n}\right\vert\) is the radius of convergence.
Example. Find the radius and interval of convergence of
\[\sum_{n=0}^{\infty}\frac{(-3)^n}{n2^n}(x-4)^n.\]
Solution. Here \(a_n=(-3)^n/n2^n\). So
\[L=|x-x_0|\lim_{n\to \infty}\;\left\vert\frac{a_{n+1}}{a_n}\right\vert
=|x-4|\lim_{n\to \infty}\;\left\vert\frac{(-3)^{n+1}/(n+1)2^{n+1}}{(-3)^n/n2^n}\right\vert
=|x-4|\lim_{n\to \infty}\frac{3n}{2(n+1)}=\frac{3}{2}|x-4|.\]
So the power series converges when \(L=\frac{3}{2}|x-4| < 1\), i.e., \(|x-4| < \frac{2}{3}\), i.e., for all \(x\)
in \((4-\frac{2}{3},4+\frac{2}{3})=(\frac{10}{3},\frac{14}{3})\). It diverges when \(x < \frac{10}{3}\) or \(x > \frac{14}{3}\).
So the radius of convergence is \(\frac{2}{3}\). It can be verified that the power series diverges when
\(x=\frac{10}{3}\) and \(x=\frac{14}{3}\). Thus the interval of convergence is \(\left(\frac{10}{3},\frac{14}{3}\right)\).
Taylor Series: Suppose \(f\) is infinitely differentiable function at \(x_0\), i.e., \(f^{(n)}(x_0)\) exists for \(n=1,2,\ldots\).
A Taylor series of \(f\) about \(x_0\) is a series of the form
\[\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots\]
\(f\) is called analytic at \(x=x_0\) if the Taylor series of \(f\) about \(x_0\) has a positive radius of convergence, i.e., \(R > 0\). When is the Taylor series of \(f\) equal to \(f(x)\)?
\[f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots,\]
for all \(x\) in \((x_0-R,x_0+R)\) whenever
\[\lim_{n\to \infty}\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k=f(x),\]
for all \(x\) in \((x_0-R,x_0+R)\).
Example.
Calculus on power series:
On the interval \((x_0-R,x_0+R)\), power series \(\sum_{n=0}^{\infty}a_n(x-x_0)^n\) can be differentiated and integrated term by term.
Example.
\[\begin{align*}
\displaystyle\frac{d}{dx}\cos x=\frac{d}{dx}\sum_{n=0}^{\infty}(-1)^n \frac{x^{2n}}{(2n)!}
&=\frac{d}{dx}\left( 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots\right)\\
&=-\frac{x}{1!}+\frac{x^3}{3!}-\frac{x^5}{5!}+\frac{x^7}{7!}+\cdots\\
&=-\sin x.
\end{align*}\]
Index shift:
Suppose \(y=\displaystyle\sum_{n=0}^{\infty}a_nx^n=a_0+a_1 x+a_2 x^2+a_3 x^3+\cdots\). Its derivative is
\[y'=a_1 +2a_2 x+3a_3 x^2+4a_4x^3+\cdots=\sum_{n=1}^{\infty}na_nx^{n-1}.\]
Note that the generic term of the series for \(y'\) involves \(x^{n-1}\) instead of \(x^n\). Our goal is to write the generic term involving \(x^n\). To do that substitute \(m=n-1\). Then \(n=m+1\) and \(n=1\) corresponds \(m=0\). So we get
\[y'=\sum_{n=1}^{\infty}na_nx^{n-1}=\sum_{m=0}^{\infty}(m+1)a_{m+1}x^{m}.\]
Finally we can replace the dummy index \(m\) by \(n\) and get
\[y'=\sum_{n=1}^{\infty}na_nx^{n-1}=\sum_{n=0}^{\infty}(n+1)a_{n+1}x^{n}.\]
Similarly verify the index shift for \(
y''\):
\[y''=\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^{n}.\]
Last edited