Series Solutions about an Ordinary Point |
Consider the following linear homogeneous second order ODE:
\[\begin{equation}
y''+p(x)y'+q(x)y=0. \;\;\;\;(60)
\end{equation}\]
If \(p\) and \(q\) are constant, then we learned how to find the solution. Now we find a series solution when \(p\) and \(q\) are analytic at some point \(x_0\). If \(p\) and \(q\) are analytic at \(x_0\), then \(x_0\) is called an ordinary point of (60).
If one of\(p\) and \(q\) is not analytic at \(x_0\), then \(x_0\) is called a singular point of (60).
Theorem.
If \(x_0\) is an ordinary point of (60), then the general solution is
\[y=\sum_{n=0}^{\infty}a_n(x-x_0)^n=a_0y_1(x)+a_1y_2(x),\]
where \(y_1\) and \(y_2\) are two fundamental power series solutions of (60) about \(x_0\).
Example. \(y''+y=0\)
Solution. Suppose we have the following power series solution:
\[\begin{equation}
y=a_0+a_1 x+a_2 x^2+a_3 x^3+\cdots=\sum_{n=0}^{\infty}a_n x^n \;\;\;\;(61)
\end{equation}\]
Differentiating we get
\[\begin{eqnarray*}
y'=&a_1 +2a_2 x+3a_3 x^2+4a_4x^3+\cdots &=\sum_{n=1}^{\infty}na_nx^{n-1}\\
y''=&2a_2+3\cdot2 a_3x+4\cdot 3 a_4 x^2+\cdots &=\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}
\end{eqnarray*}\]
Shifting index we get
\[\begin{equation}
y''=2a_2+3\cdot2 a_3x+4\cdot 3 a_4 x^2+\cdots
=\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2} x^{n} \;\;\;\;(62)
\end{equation}\]
Using (61) and (62) in \(y''+y=0\), we get
\[\begin{align*}
\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2} x^{n} +\sum_{n=0}^{\infty}a_n x^n &=0\\
\sum_{n=0}^{\infty}[(n+2)(n+1)a_{n+2}+a_n] x^{n} &=0
\end{align*}\]
Since the series is zero for all \(x\), each coefficient is zero, i.e.,
\[(n+2)(n+1)a_{n+2}+a_n=0 \text{ for } n=0,1,2,\ldots\]
So we have \[a_{n+2}=-\frac{a_n}{(n+2)(n+1)} \text{ for } n=0,1,2,\ldots\]
Note the pattern
\[\begin{align*}
n=0 &\implies a_2 =-\frac{a_0}{2\cdot 1} =-\frac{a_0}{2!} \\
n=2 &\implies a_4 =-\frac{a_2}{4\cdot 3} =\frac{a_0}{4\cdot 3\cdot 2!}
=\frac{a_0}{4!}\\
n=4 &\implies a_6 =-\frac{a_4}{6\cdot 5} =-\frac{a_0}{6\cdot 5\cdot 4!}
=-\frac{a_0}{6!}\\
&\cdots\\
n=2k-2 &\implies a_{2k} =(-1)^k \frac{a_0}{(2k)!}= \frac{(-1)^k}{(2k)!}a_0,\; k=0,1,2,3,\ldots
\end{align*}\]
Similarly
\[\begin{align*}
n=1 &\implies a_3 =-\frac{a_1}{3\cdot 2} =-\frac{a_1}{3!} \\
n=3 &\implies a_5 =-\frac{a_3}{5\cdot 4} =\frac{a_1}{5\cdot 4\cdot 3!}
=\frac{a_1}{5!}\\
n=5 &\implies a_7 =-\frac{a_5}{7\cdot 6} =-\frac{a_1}{7\cdot 6\cdot 5!}
=-\frac{a_1}{7!}\\
&\cdots\\
n=2k-1 &\implies a_{2k+1} =(-1)^k \frac{a_1}{(2k+1)!}= \frac{(-1)^k}{(2k+1)!}a_1,\; k=0,1,2,3,\ldots
\end{align*}\]
Thus
\[\begin{align*}
y&=a_0+a_1 x+a_2 x^2+a_3 x^3+ a_4 x^4+a_5 x^5+\cdots\\
&= a_0+a_1 x-\frac{a_0}{2!}x^2 -\frac{a_1}{3!}x^3+ \frac{a_0}{4!}x^4 +\frac{a_1}{5!}x^5+\cdots\\
&=a_0\left(1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots \right)+
a_1 \left(\frac{x}{1!}-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots \right)\\
&=a_0 \sum_{n=0}^{\infty}(-1)^n \frac{x^{2n}}{(2n)!}
+ a_1 \sum_{n=0}^{\infty}(-1)^n \frac{x^{2n+1}}{(2n+1)!}.\\
\end{align*}\]
(a) We can verify that \(y_1=\displaystyle\sum_{n=0}^{\infty}(-1)^n \frac{x^{2n}}{(2n)!}\) and
\(y_2=\displaystyle\sum_{n=0}^{\infty}(-1)^n \frac{x^{2n+1}}{(2n+1)!}\) are two power series solutions of \(y''+y=0\)
which are analytic at \(0\) (i.e., positive radius of convergence). Here the radii of convergence of \(y_1\) and \(y_2\) are \(\infty\)
which means they converge for all \(x\). So our series solutions are valid for all \(x\).
(b) Note that \(y_1(0)=1\) and \(y_2(0)=0\). Also \(y_1'(0)=0\) and \(y_2'(0)=1\). Then
\[W(y_1,y_2)(0)=\,\begin{array}{|cc|}1& 0\\ 0& 1\end{array}=1\neq 0.\]
Thus \(y_1\) and \(y_2\) are linearly independent and hence fundamental solutions.
(c) The general solution is \[y=a_0 \sum_{n=0}^{\infty}(-1)^n \frac{x^{2n}}{(2n)!}
+ a_1 \sum_{n=0}^{\infty}(-1)^n \frac{x^{2n+1}}{(2n+1)!}.\]
(But we already knew the general solution to be \(y=c_1\cos x+ c_2\sin x\))
Example. \((1-x)y''+xy'-y=0\)
Solution. Suppose we have the following power series solution:
\[\begin{equation}
y=a_0+a_1 x+a_2 x^2+a_3 x^3+\cdots=\sum_{n=0}^{\infty}a_n x^n \;\;\;\;(63)
\end{equation}\]
Differentiating we get
\[\begin{eqnarray*}
y'=&a_1 +2a_2 x+3a_3 x^2+4a_4x^3+\cdots &=\sum_{n=1}^{\infty}na_nx^{n-1}\\
y''=&2a_2+3\cdot2 a_3x+4\cdot 3 a_4 x^2+\cdots &=\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}
\end{eqnarray*}\]
Shifting index we get
\[\begin{eqnarray}
y'=a_1 +2a_2 x+3a_3 x^2+4a_4x^3+\cdots =\sum_{n=0}^{\infty} (n+1)a_{n+1}x^{n} \;\;\;\;(64)\\
y''=2a_2+3\cdot2 a_3x+4\cdot 3 a_4 x^2+\cdots
=\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2} x^{n} \;\;\;\;(65)
\end{eqnarray}\]
Using (63), (64), and (65) in \((1-x)y''+xy'-y=0\), we get
\[\begin{align*}
(1-x)\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2} x^{n}
+x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^{n}-\sum_{n=0}^{\infty}a_n x^n &=0\\
\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2} x^{n}
-\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2} x^{n+1}
+\sum_{n=0}^{\infty} (n+1)a_{n+1}x^{n+1}-\sum_{n=0}^{\infty}a_n x^n &=0\\
\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2} x^{n}
+\sum_{n=0}^{\infty} [-(n+2)(n+1)a_{n+2}+(n+1)a_{n+1}] x^{n+1}
-\sum_{n=0}^{\infty}a_n x^n &=0\\
\end{align*}\]
Shifting index in the middle series we get
\[\begin{align}
\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2} x^{n}
+\sum_{n=1}^{\infty} [-(n+1)na_{n+1}+na_{n}] x^{n}
-\sum_{n=0}^{\infty}a_n x^n &=0 \nonumber\\
\left(2a_2+\sum_{n=1}^{\infty}(n+2)(n+1)a_{n+2} x^{n} \right)
+\sum_{n=1}^{\infty} [-(n+1)na_{n+1}+na_{n}] x^{n}
+\left( -a_0-\sum_{n=1}^{\infty}a_n x^n \right) &=0\nonumber\\
2a_2-a_0+ \sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2}-(n+1)na_{n+1}+na_{n}-a_n] x^{n} &=0\nonumber\\
2a_2-a_0+ \sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2}-(n+1)na_{n+1}+(n-1)a_{n}] x^{n} &=0\;\;\;\;(66)
\end{align}\]
Since the series is zero for all \(x\), each coefficient is zero, i.e.,
\[\begin{align*}
2a_2-a_0 &= 0\\
(n+2)(n+1)a_{n+2}-(n+1)na_{n+1}+(n-1)a_{n} &= 0 \text{ for } n=1,2,3,\ldots\\
\end{align*}\]
So we have
\[\begin{align*}
& \hspace{32pt} && a_2 =\frac{a_0}{2} \\
n=1 &\implies 6a_3-2a_2 =0 &\implies &a_3=\frac{a_2}{3}
=\frac{a_0}{6}\\
n=2 &\implies 12a_4-6a_3+a_2 =0 &\implies &a_4=\frac{a_3}{2}-\frac{a_2}{12}=\frac{a_0}{12}-\frac{a_0}{24}=\frac{a_0}{24}
\end{align*}\]
Thus
\[\begin{align*}
y&=a_0+a_1 x+a_2 x^2+a_3 x^3+ a_4 x^4+a_5 x^5+\cdots\\
&= a_0+a_1 x+\frac{a_0}{2}x^2 +\frac{a_0}{6}x^3+ \frac{a_0}{24}x^4 +\cdots\\
&=a_0\left(1+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\cdots \right)+ a_1 x.\\
\end{align*}\]
(a) We can verify that \(y_1=1+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\cdots \) and \(y_2=x\) are
two power series solutions about \(0\).
(b) Note that \(y_1(0)=1\) and \(y_2(0)=0\). Also \(y_1'(0)=0\) and \(y_2'(0)=1\). Then
\[W(y_1,y_2)(0)=\,\begin{array}{|cc|}1& 0\\ 0& 1\end{array}=1\neq 0.\]
Thus \(y_1\) and \(y_2\) are linearly independent and hence fundamental solutions.
(c) The general solution is \[y=a_0\left(1+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\cdots \right)+ a_1 x.\]
(We can verify that the general solution is \(y=c_1(e^x-x)+ c_2 x\))
Example. \((1-x)y''+xy'-y=6\sin x\)
Find the general solution in terms of power series with first four nonzero terms.
Solution. By the preceding problem we have the homogeneous solution:
\[y_h=a_0\left(1+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\cdots \right)+ a_1 x.\]
Now to find a particular solution \(y_p=\sum_{n=0}^{\infty}a_n x^n\)
we plug \(\sin x=\displaystyle \frac{x}{1!}-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots\) in (66):
\[2a_2-a_0+ \sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2}-(n+1)na_{n+1}+(n-1)a_{n}] x^{n} =
\frac{6x}{1!}-\frac{6x^3}{3!}+\frac{6x^5}{5!}-\frac{6x^7}{7!}+\cdots\]
Comparing the coefficients of like power terms of \(x\), we get
\[\begin{align*}
2a_2-a_0=0 &\implies & a_2 =\frac{a_0}{2} \\
6a_3-2a_2 =6 &\implies &a_3=\frac{a_2}{3}+1
=\frac{a_0}{6}+1\\
12a_4-6a_3+a_2 =0 &\implies &a_4=\frac{a_3}{2}-\frac{a_2}{12}=\frac{a_0}{24}+\frac{1}{2}
\end{align*}\]
Plugging \(a_0=6\) and \(a_1=1\), we get
\[y_p=6+x+3x^2+2x^3+\frac{3}{4}x^4+\cdots.\]
Thus the general solution is
\[y=y_h+y_p=a_0\left(1+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\cdots \right)+ a_1 x+\left(6+x+3x^2+2x^3+\frac{3}{4}x^4+\cdots\right).\]
Last edited