\(\mu\) and Möbius Inversion Formula |
German mathematician August Ferdinand Möbius introduced a number-theoretic function \(\mu\) called Möbius \(\mu\) function as follows: \(\mu(1)=1\) and for any integer \(n>1\) with the prime-power factorization \(n=p_1^{a_1}\cdot p_2^{a_2}\cdots p_k^{a_k}\), \[\mu(n)= \begin{cases} 0&\text{ if } a_i\geq 2 \text{ for some } i\\ (-1)^k &\text{ if } a_i=1 \text{ for all } i. \end{cases}\]
Alternately \(\mu(n)\) can be defined using the square-freeness of \(n\) for its prime factors: \[\mu(n)=\left\lbrace \begin{array}{rl} 0&\text{ if \(n\) is not square-free }\\ 1&\text{ if \(n\) is a square-free product of an even number of primes }\\ -1&\text{ if \(n\) is a square-free product of an odd number of primes. } \end{array} \right.\]
Example. \(\mu(1)=1\), \(\mu(2)=-1\), \(\mu(3)=-1\), \(\mu(4)=0\), \(\mu(5)=-1\), \(\mu(6)=1\), and \(\mu(p)=-1\) for any prime \(p\).
Theorem. \(\mu\) is a multiplicative function.
Lemma. For any positive integer \(n\), \[\sum_{d\vert n} \mu(d)= \begin{cases}1& \text{ if }n=1\\ 0& \text{ if }n>1. \end{cases}\]
Theorem.(Möbius Inversion Formula) Let \(f\) and \(F\) be two number-theoretic functions where \[ F(n)=\sum_{d\vert n} f(d).\] Then \[ f(n)=\sum_{d\vert n} \mu\left(\frac{n}{d}\right)F(d).\]
Note that since \(\tau(n)=\sum_{d\vert n}1\) and \(\sigma(n)=\sum_{d\vert n} d\), by the Möbius Inversion Formula we have \[ 1=\sum_{d\vert n} \mu\left(\frac{n}{d}\right)\tau(d) \text{ and } n=\sum_{d\vert n} \mu\left(\frac{n}{d}\right)\sigma(d).\]
Last edited