Basic Properties of Congruences |
The concept of congruence was introduced in the book Disquisitiones Arithmeticae ("Arithmetical Investigations" in Latin) written by 21 years old
Carl Friedrich Gauss in 1798.
Given a positive integer \(n\), integers \(a\) and \(b\) are congruent modulo \(n\) if their difference is an integer multiple
of \(n\). We denote it by \(a\equiv b \:\left(\mathrm{mod}\: n \right)\) (Read as \(a\) is congruent to \(b\) modulo \(n\) ).
\[ a \equiv b \:\left(\mathrm{mod}\: n\right) \iff n \vert (a-b) \iff a=kn+b \text{ for some } k\in \mathbb Z.\]
Example. \(7 \equiv 1 \:\left(\mathrm{mod}\:3\right)\) and \(9 \not\equiv 1 \:\left(\mathrm{mod}\:3\right) \), i.e.,
\(9\) and \(1\) are incongruent modulo \(3\).
Many arithmetic properties and operations on congruence are similar to that of equality as follows.
Proposition.
Let \(n\) be a positive integer. The following hold for all integers \(a,b,c\), and \(d\).
Let us use the above properties for the following divisibility problem.
Problem. Determine if \(10\) divides \(17^{23}-3\).
It suffices to determine if \(17^{23}\equiv 3 \:\left(\mathrm{mod}\:{10} \right)\).
Note that \(17\equiv 7\:\left(\mathrm{mod}\:{10} \right)\). Then \(17^2\equiv 7^2\equiv 9\:\left(\mathrm{mod}\: 10 \right)\),
\(17^3\equiv 9\cdot 17\equiv 3\:\left(\mathrm{mod}\: 10 \right)\), and \(17^4\equiv 9^2\equiv 1\:\left(\mathrm{mod}\: 10 \right)\) by
(8) and (5). Now since \(23=4\cdot 5+3\), \(17^{23}=(17^4)^5 17^3\equiv (1)^5 17^3\equiv 3 \:\left(\mathrm{mod}\: 10 \right)\) by
(8) and (5).
Note that while the converse of (4) is true, but not the converse of (5). For example, \(6\cdot 3 \equiv 2\cdot 3 \:\left(\mathrm{mod}\: 6\right)\) but \(6 \not\equiv 2 \:\left(\mathrm{mod}\: 6\right)\). How to divide both sides of a congruence?
Theorem. Let \(n\) be a positive integer. Let \(a,b\), and \(c\) be integers. If \(ac \equiv bc \:\left(\mathrm{mod}\: n \right)\), then \(a \equiv b \:\left(\mathrm{mod}\:\frac{n}{\gcd(n,c)} \right)\).
Corollary. Let \(n\) be a positive integer. The following hold for all integers \(a,b\), and \(c\).
Application. A nice application of modular arithmetic finds \(w\), the day of the week, where \(w=0\) means Sunday,..., \(w=6\) means Saturday: For the date \(d/m/100c+y,\; c\geq 16,\; 0\leq y\leq 99\), \[ w\equiv d+\left\lfloor 2.6m-0.2\right\rfloor-2c+y+\left\lfloor \frac{c}{4}\right\rfloor+\left\lfloor \frac{y}{4}\right\rfloor \:\left(\mathrm{mod}\: 7\right),\] where \(m=1\) means March,..., \(m=12\) means February. For \(4\)th of November, \(2024\) we have \[ w\equiv 4+\left\lfloor 2.6\cdot 9-0.2\right\rfloor-2\cdot 20+24+\left\lfloor \frac{20}{4}\right\rfloor+\left\lfloor \frac{24}{4} \right\rfloor\equiv 22 \equiv 1 \:\left(\mathrm{mod}\: 7\right).\] So \(4\)th of November, \(2024\) is a Monday.
Last edited