Series with Positive Terms |
In this section we study four tests of convergence for series with positive terms: The Integral Test,
the \(p\)-series Test, the Comparison Test, the Limit Comparison Test.
The Integral Test:
Let \(a_n=f(n)\) for all integers \(n\geq 1\) where \(f\) is a continuous, positive, and decreasing function
on \([1,\infty)\). Then \(\displaystyle\sum_{n=1}^{\infty} a_n\) is convergent if and only if
\(\displaystyle\int_1^{\infty} f(x)\, dx\) is convergent.
Example.
Use the Integral Test to show that \(\displaystyle \sum_{n=1}^{\infty} \frac{2n}{n^4+3}\) is convergent.
Solution.
First note that \(f(x)=\displaystyle\frac{2x}{x^4+3}\) is a continuous, positive, and decreasing function on
\([1,\infty)\).
\[\begin{align*}
\int_1^{\infty} f(x)\, dx &=\int_1^{\infty} \frac{2x}{x^4+3}\, dx\\
&=\lim_{t\to \infty}\int_1^t \frac{2x}{x^4+3}\, dx\\
&=\lim_{t\to \infty} \left.\frac{1}{\sqrt{3}}\tan^{-1} \left( \frac{x^2}{\sqrt{3}} \right) \right\vert_1^t \;\;\left(\text{Hint. } u=x^2 \right)\\
&=\lim_{t\to \infty} \frac{1}{\sqrt{3}} \left[ \tan^{-1} \left( \frac{t^2}{\sqrt{3}} \right) - \tan^{-1}\left( \frac{1}{\sqrt{3}} \right) \right]\\
&= \frac{1}{\sqrt{3}} \left[ \frac{\pi}{2}-\frac{\pi}{6} \right]\\
&=\frac{\pi}{3\sqrt{3}}.
\end{align*}\]
Since \(\displaystyle\int_1^{\infty} \frac{2x}{x^4+3}\, dx\) is convergent, \(\displaystyle \sum_{n=1}^{\infty} \frac{2n}{n^4+3}\)
is convergent by the Integral Test.
The \(p\)-series Test: The \(p\)-series \(\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^p}\) is convergent if \(p>1\) and divergent if \(p\leq 1\).
Example.
The Comparison Test: Suppose \(\displaystyle\sum_{n=1}^{\infty} a_n\) and \(\displaystyle\sum_{n=1}^{\infty} b_n\) are two series with positive terms.
Note that we often compare a series with the \(p\)-series \(\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^p}\) or the geometric series \(\displaystyle\sum_{n=1}^{\infty} ar^{n-1}\).
Example.
The Limit Comparison Test: Suppose \(\displaystyle\sum_{n=1}^{\infty} a_n\) and \(\displaystyle\sum_{n=1}^{\infty} b_n\) are two series with positive terms. If \(\displaystyle\lim_{n\to \infty} \frac{a_n}{b_n}\) is a positive number, then either both series converge or both series diverge.
Example.
Use the Limit Comparison Test to show that \(\displaystyle \sum_{n=1}^{\infty} \frac{\sqrt{n^4-1}}{2n^3+n^2}\)
is divergent.
Solution.
First we construct a series with positive terms by keeping the highest degree terms of the numerator and
denominator of the given series:
\[\displaystyle \sum_{n=1}^{\infty} \frac{\sqrt{n^4}}{n^3}= \displaystyle \sum_{n=1}^{\infty}\frac{n^2}{n^3}= \displaystyle \sum_{n=1}^{\infty}\frac{1}{n}.\]
\[\begin{align*}
\lim_{n\to \infty} \displaystyle\frac{\frac{\sqrt{n^4-1}}{2n^3+n^2}}{\frac{1}{n}} &= \lim_{n\to \infty} \frac{\sqrt{n^4-1}}{2n^3+n^2}\cdot\frac{n}{1}\\
&= \lim_{n\to \infty} \frac{n\sqrt{n^4-1}/n^3}{(2n^3+n^2)/n^3}\\
&= \lim_{n\to \infty} \frac{\sqrt{1-\frac{1}{n^4}}}{2+\frac{1}{n}}\\
&= \frac{1}{2}>0.
\end{align*}\]
Since the harmonic series \(\displaystyle \sum_{n=1}^{\infty}\frac{1}{n}\) is divergent, \(\displaystyle \sum_{n=1}^{\infty} \frac{\sqrt{n^4-1}}{2n^3+n^2}\) is divergent by the Limit Comparison Test.
Last edited