Series |
A series is the sum of the terms of a sequence \(\{a_n\}\) which is denoted by \(\displaystyle\sum_{n=1}^{\infty} a_n\).
Example.
A series \(\displaystyle\sum_{n=1}^{\infty} a_n\) as an area
Definition. For the series \(\displaystyle\sum_{n=1}^{\infty} a_n\), the \(n\)th partial sum, denoted by \(s_n\), is \[s_n=\sum_{i=1}^n a_i=a_1+a_2+a_3+\cdots+a_n.\] The series \(\displaystyle\sum_{n=1}^{\infty} a_n\) converges to a real number \(s\) if the sequence \(\{ s_n \}\) of partial sums of \(\displaystyle\sum_{n=1}^{\infty} a_n\) converges to \(s\). We write \[\sum_{n=1}^{\infty} a_n=\lim_{n\to \infty} s_n=\lim_{n\to \infty}\sum_{i=1}^n a_i.\] A series is called convergent if it converges. Otherwise it is divergent.
Example.
Consider the telescoping series \(\displaystyle\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}+\cdots\).
Note that \(s_1=\displaystyle\frac{1}{1\cdot 2},\,s_2=\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3},\, s_3=\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}, \ldots.\)
\[\begin{align*}
s_n &= \sum_{i=1}^n \frac{1}{i(i+1)}\\
&= \sum_{i=1}^n \left( \frac{1}{i}-\frac{1}{i+1} \right)\\
&= \left( \frac{1}{1}-\frac{1}{2} \right)+\left( \frac{1}{2}-\frac{1}{3} \right)+\cdots+\left( \frac{1}{n-1}-\frac{1}{n} \right)+\left( \frac{1}{n}-\frac{1}{n+1} \right)\\
&= 1-\frac{1}{n+1}.
\end{align*}\]
\[\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim_{n\to \infty} s_n=\lim_{n\to \infty} \left(1-\frac{1}{n+1} \right)=1.\]
Theorem. The geometric series \(\displaystyle\sum_{n=1}^{\infty} ar^{n-1}=a+ar+ar^2+\cdots\) is convergent if \(|r|<1\), i.e., \(-1< r < 1\) and divergent if \(|r|\geq 1\). In particular, \[ \sum_{n=1}^{\infty} ar^{n-1}= \frac{a}{1-r}, \;\; |r|<1. \]
Example.
Algebra for series:
Theorem.
If \(\displaystyle\sum_{n=1}^{\infty} a_n\) and \(\displaystyle\sum_{n=1}^{\infty} b_n\) are convergent,
then so are the following series:
\[ \sum_{n=1}^{\infty} (a_n+ b_n),\; \sum_{n=1}^{\infty} (a_n-b_n),\;\sum_{n=1}^{\infty} ca_n, \]
for all real numbers \(c\). In particular,
\[ \sum_{n=1}^{\infty} (a_n+ b_n)=\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n,\; \sum_{n=1}^{\infty} (a_n-b_n)=\sum_{n=1}^{\infty} a_n-\sum_{n=1}^{\infty} b_n,\;\sum_{n=1}^{\infty} ca_n=c\sum_{n=1}^{\infty} a_n. \]
Example.
Find \(\displaystyle\sum_{n=1}^{\infty} \left( \frac{2}{n(n+1)}+\frac{1}{e^n} \right)\).
Solution. We know that \(\displaystyle\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1\) (the telescoping series) and
\(\displaystyle\sum_{n=1}^{\infty} \frac{1}{e^n}=\frac{\frac{1}{e}}{1-\frac{1}{e}}=\frac{1}{e-1}\)
(the geometric series with \(a=r=\frac{1}{e}\)). Then
\[\sum_{n=1}^{\infty} \left( \frac{2}{n(n+1)}+\frac{1}{e^n} \right)=2\sum_{n=1}^{\infty} \frac{1}{n(n+1)}+\sum_{n=1}^{\infty}\frac{1}{e^n}=2\cdot 1+\frac{1}{e-1}=\frac{2e-1}{e-1}. \]
Theorem. If \(\displaystyle\sum_{n=1}^{\infty} a_n\) is convergent, then \(\displaystyle\lim_{n\to \infty} a_n=0\).
Note that the converse of the preceding theorem is not true.
Example.
The harmonic series \(\displaystyle\sum_{n=1}^{\infty} \frac{1}{n}\) is divergent but
\(\displaystyle\lim_{n\to \infty} \frac{1}{n}=0\).
By the contrapositive of the preceding theorem, we have the following result:
Theorem.(Divergence Test)
If \(\displaystyle\lim_{n\to \infty} a_n \neq 0\) or the limit does not exist, the
\(\displaystyle\sum_{n=1}^{\infty} a_n\) is divergent.
Example. \(\displaystyle\sum_{n=1}^{\infty} \frac{n(n+3)}{(n+1)^2}\) is divergent by the Divergence Test because \[\lim_{n\to \infty} \frac{n(n+3)}{(n+1)^2}=\lim_{n\to \infty} \frac{1\left(1+\frac{3}{n}\right)}{\left(1+\frac{1}{n}\right)^2}=1\neq 0. \]
Last edited