Similar and Diagonalizable Matrices |
Definition.
Let \(A\) and \(B\) be \(n\times n\) matrices. \(A\) is similar to \(B\) if \(A=PBP^{-1}\) for some
invertible matrix \(P\).
Remark.
If \(A\) is similar to \(B\), then \(B\) is similar to \(A\) because \(B=P^{-1}A(P^{-1})^{-1}\). So we simply say
\(A\) and \(B\) are similar.
Example.
Consider \(A=\left[\begin{array}{rr}6&-1\\2&3\end{array} \right],\; B=\left[\begin{array}{rr}5&0\\0&4\end{array} \right],\;
C=\left[\begin{array}{rr}5&4\\0&0\end{array} \right]\).
\(A\) and \(B\) are similar because \(A=PBP^{-1}\) where \(P=\left[\begin{array}{rr}1&1\\1&2\end{array} \right]\) and
\(P^{-1}=\left[\begin{array}{rr}2&-1\\-1&1\end{array} \right]\).
It can be verified that there is no invertible matrix \(P\) such that \(A=PCP^{-1}\). So \(A\) and \(C\) are not similar.
Theorem. If \(n\times n\) matrices \(A\) and \(B\) are similar, then they have the same characteristic polynomial and consequently the same eigenvalues, counting multiplicities.
Remark.
Theorem. Let \(A\) be an \(n\times n\) matrix with eigenvalue \(\lambda\). Then the geometric multiplicity of \(\lambda\) is less than or equal to the algebraic multiplicity of \(\lambda\).
Definition.
A square matrix \(A\) is diagonalizable if \(A\) is similar to a diagonal matrix, i.e., \(A=PDP^{-1}\)
for some invertible matrix \(P\) and some diagonal matrix \(D\).
Example. In the first example, \(A\) is diagonalizable as \(A=PBP^{-1}\) where \(B\) is a diagonal matrix.
Theorem. Let \(A\) be an \(n\times n\) matrix. Then TFAE.
Corollary. Let \(A\) be an \(n\times n\) matrix.
A formula for \(A^k\): Suppose \(A\) is diagonalizable and \(A=PDP^{-1}\) for some diagonal matrix \(D\).
Then \[A^k=PD^kP^{-1}.\]
It is easy to see that
\[AA\cdots A=(PDP^{-1})(PDP^{-1})\cdots (PDP^{-1})=PDD\cdots DP^{-1}.\]
Note that \(D^k\) is obtained from \(D\) by raising the power of each diagonal entry of \(D\) to \(k\).
Example.
Let \(A=\left[\begin{array}{rrr}
2&0&0\\
1&2&1\\
-1&0&1
\end{array}\right]\).
Solution. \(\det(\lambda I-A)=\left|\begin{array}{ccc}
\lambda-2&0&0\\
-1&\lambda-2&-1\\
1&0&\lambda-1
\end{array}\right|=(\lambda-1)(\lambda-2)^2=0\implies \lambda=1,2,2\).
Verify the following:
\[\begin{eqnarray*}
\operatorname{NS}(A-1I)&=&\displaystyle\operatorname{Span}\left\{\left[\begin{array}{r}0\\-1\\1\end{array}\right]\right\}\\
\operatorname{NS}(A-2I)&=&\displaystyle\operatorname{Span}\left\{
\left[\begin{array}{r}0\\1\\0\end{array}\right],
\left[\begin{array}{r}-1\\0\\1\end{array}\right]
\right\}
\end{eqnarray*}\]
(a) Since \(3\times 3\) matrix \(A\) has \(3\) linearly independent eigenvectors, \(A\) is diagonalizable and
\(A=PDP^{-1}\) where
\(D=\left[\begin{array}{rrr}
1&0&0\\0&2&0\\0&0&2\end{array}\right]\) and
\(P=\left[\begin{array}{rrr}
0&0&-1\\-1&1&0\\1&0&1\end{array}\right]\).
You may verify this by showing \(AP=PD=\left[\begin{array}{rrr}
0&0&-2\\-1&2&0\\1&0&2\end{array}\right]\).
(b) Since \(A=PDP^{-1}\),
\[\begin{eqnarray*}
A^k&=&PD^kP^{-1}\\
&=&\left[\begin{array}{rrr}
0&0&-1\\-1&1&0\\1&0&1\end{array}\right]
\left[\begin{array}{rrr}
1&0&0\\0&2&0\\0&0&2\end{array}\right]^k
\left[\begin{array}{rrr}
1&0&1\\1&1&1\\-1&0&0\end{array}\right]\\
&=&\left[\begin{array}{rrr}
0&0&-1\\-1&1&0\\1&0&1\end{array}\right]
\left[\begin{array}{rrr}
1&0&0\\0&2^k&0\\0&0&2^k\end{array}\right]
\left[\begin{array}{rrr}
1&0&1\\1&1&1\\-1&0&0\end{array}\right]\\
&=&\left[\begin{array}{ccc}
2^k&0&0\\-1+2^k&2^k&-1+2^k\\1-2^k&0&1\end{array}\right].
\end{eqnarray*}\]
An interesting fact: If \(A\) and \(B\) are diagonalizable and they have the same eigenvectors, then \(AB=BA.\)
Last edited