Basics of Eigenvalues and Eigenvectors |
Example.
Consider \(A=\left[\begin{array}{rr}1&2\\0&3\end{array} \right],\;\lambda=3,\;
\overrightarrow{v}=\left[\begin{array}{r}1\\1\end{array} \right],\;
\overrightarrow{u}=\left[\begin{array}{r}-2\\1\end{array} \right]\).
Since \(A\overrightarrow{v}
=\left[\begin{array}{rr}1&2\\0&3\end{array} \right]\left[\begin{array}{r}1\\1\end{array} \right]
=\left[\begin{array}{r}3\\3\end{array} \right]
=3\left[\begin{array}{r}1\\1\end{array} \right]
=\lambda\overrightarrow{v}\),
\(3\) is an eigenvalue of \(A\) and \(\overrightarrow{v}\) is an eigenvector of \(A\) corresponding to the
eigenvalue \(3\).
Since \(A\overrightarrow{u}
=\left[\begin{array}{rr}1&2\\0&3\end{array} \right]\left[\begin{array}{r}-2\\1\end{array} \right]
=\left[\begin{array}{r}0\\3\end{array} \right]
\neq \lambda\left[\begin{array}{r}-2\\1\end{array} \right]
=\lambda\overrightarrow{u}\) for all scalars \(\lambda\),
\(\overrightarrow{u}\) is not an eigenvector of \(A\).
Remark.
For a real matrix, an eigenvalue can be a complex number and an eigenvector can be a complex vector.
Example.
Consider \(A=\left[\begin{array}{rr}0&1\\-1&0\end{array} \right]\).
Since \(\left[\begin{array}{rr}0&1\\-1&0\end{array} \right]\left[\begin{array}{r}1\\i\end{array} \right]
=\left[\begin{array}{r}i\\-1\end{array} \right]
=i\left[\begin{array}{r}1\\i\end{array} \right]\),
\(i\) is an eigenvalue of \(A\) and \(\left[\begin{array}{r}1\\i\end{array} \right]\) is an eigenvector of \(A\)
corresponding to the eigenvalue \(i\).
Remark. Since the roots of the characteristic polynomial are the eigenvalues of the \(n\times n\) matrix \(A\), \(A\) has \(n\) eigenvalues, not necessarily distinct.
Remark. If \(\lambda\) is an eigenvalue of \(A\), then \(\operatorname{NS}(A-\lambda I)\) is the union of \(\{\overrightarrow{0}\}\) and the set of all eigenvectors of \(A\) corresponding to the eigenvalue \(\lambda\).
Example. Let \(A=\left[\begin{array}{rrr}3&0&0\\0&4&1\\0&-2&1\end{array} \right]\).
Solution. (a) The characteristic polynomial of \(A\) is
\[\begin{eqnarray*}
\det(\lambda I-A)&=&\left|\begin{array}{ccc}\lambda-3&0&0\\0&\lambda-4&-1\\0&2&\lambda-1\end{array} \right|\\
&=&(\lambda-3)\left|\begin{array}{cc}\lambda-4&-1\\2&\lambda-1\end{array} \right|-0+0\\
&=&(\lambda-3)(\lambda^2-5\lambda+6)\\
&=&(\lambda-3)(\lambda-3)(\lambda-2).
\end{eqnarray*}\]
(b) \(\det(\lambda I-A)=(\lambda-2)(\lambda-3)^2=0\implies \lambda=2,3,3\). So \(2\) and \(3\) are eigenvalue of \(A\) with algebraic multiplicities \(1\) and \(2\) respectively.
(c) The eigenspace of \(A\) corresponding to the eigenvalue \(3\) is
\[\operatorname{NS}(A-3I)=\{\overrightarrow{x}\;|\;(A-3I)\overrightarrow{x}=\overrightarrow{0}\}.\]
\[[A-3I\;|\;\overrightarrow{0}]=\left[\begin{array}{rrr|r}0&0&0&0\\0&1&1&0\\0&-2&-2&0\end{array} \right]
\xrightarrow{2R_2+R_3}
\left[\begin{array}{rrr|r}0&0&0&0\\0&1&1&0\\0&0&0&0\end{array} \right]
\xrightarrow{R_1\leftrightarrow R_2}
\left[\begin{array}{rrr|r}0&\boxed{1}&1&0\\0&0&0&0\\0&0&0&0\end{array} \right]\]
So we get \(x_2+x_3=0\) where \(x_1\) and \(x_3\) are free variable. Thus
\[\overrightarrow{x}=\left[\begin{array}{r}x_1\\x_2\\x_3
\end{array}\right]
=\left[\begin{array}{r}x_1\\-x_3\\x_3
\end{array}\right]
=x_1\left[\begin{array}{r}1\\0\\0\end{array}\right]+
x_3\left[\begin{array}{r}0\\-1\\1\end{array}\right]
\in \operatorname{Span} \left\{\left[\begin{array}{r}1\\0\\0\end{array}\right],\;
\left[\begin{array}{r}0\\-1\\1\end{array}\right]\right\}.\]
Thus the eigenspace of \(A\) corresponding to the eigenvalue \(3\) is
\[\operatorname{NS}(A-3I)=\operatorname{Span} \left\{\left[\begin{array}{r}1\\0\\0\end{array}\right],\;
\left[\begin{array}{r}0\\-1\\1\end{array}\right]\right\},\]
and the geometric multiplicity of the eigenvalue \(3\) is \(\operatorname{dim}(\operatorname{NS}(A-3I))=2\).
The eigenspace of \(A\) corresponding to the eigenvalue \(2\) is
\[\operatorname{NS}(A-2I)=\{\overrightarrow{x}\;|\;(A-2I)\overrightarrow{x}=\overrightarrow{0}\}.\]
\[[A-2I\;|\;\overrightarrow{0}]=\left[\begin{array}{rrr|r}1&0&0&0\\0&2&1&0\\0&-2&-1&0\end{array} \right]
\xrightarrow{R_2+R_3}
\left[\begin{array}{rrr|r}1&0&0&0\\0&2&1&0\\0&0&0&0\end{array} \right]
\xrightarrow{\frac{R_2}{2}}
\left[\begin{array}{rrr|r}\boxed{1}&0&0&0\\0&\boxed{1}&\frac{1}{2}&0\\0&0&0&0\end{array} \right]\]
So we get \(x_1=0,\; x_2+\frac{x_3}{2}=0\) where \(x_3\) is a free variable. Thus
\[\overrightarrow{x}=\left[\begin{array}{r}x_1\\x_2\\x_3
\end{array}\right]
=\left[\begin{array}{r}0\\-\frac{x_3}{2}\\x_3
\end{array}\right]
=\frac{x_3}{2}\left[\begin{array}{r}0\\-1\\2
\end{array}\right]
\in \operatorname{Span} \left\{\left[\begin{array}{r}0\\-1\\2
\end{array}\right]\right\}.\]
Thus the eigenspace of \(A\) corresponding to the eigenvalue \(2\) is
\[\operatorname{NS}(A-2I)=\operatorname{Span} \left\{\left[\begin{array}{r}0\\-1\\2
\end{array}\right]\right\},\]
and the geometric multiplicity of the eigenvalue \(2\) is \(\operatorname{dim}(\operatorname{NS}(A-2I))=1\).
Remark.
Recall that \(\overrightarrow{x}\mapsto A\overrightarrow{x}\) is a linear transformation from \(\mathbb R^n\) to
\(\mathbb R^n\). This linear transformation is invariant on the eigenspaces of \(A\):
If \(\lambda\) is an eigenvalue of \(A\) and \(\overrightarrow{x}\in \operatorname{NS}(A-\lambda I)\),
then \(A\overrightarrow{x}\in \operatorname{NS}(A-\lambda I)\).
Example.
In the preceding example, \(\overrightarrow{x}=\left[\begin{array}{r}4\\-5\\5\end{array}\right]
\in \operatorname{NS}(A-3I)=\operatorname{Span} \left\{\left[\begin{array}{r}1\\0\\0\end{array}\right],\;
\left[\begin{array}{r}0\\-1\\1\end{array}\right]\right\},\)
and also \(A\overrightarrow{x}=A\left[\begin{array}{r}4\\-5\\5\end{array}\right]
=\left[\begin{array}{r}12\\-15\\15\end{array}\right]
=3\left[\begin{array}{r}4\\-5\\5\end{array}\right]
\in \operatorname{NS}(A-3I)=\operatorname{Span} \left\{\left[\begin{array}{r}1\\0\\0\end{array}\right],\;
\left[\begin{array}{r}0\\-1\\1\end{array}\right]\right\}\).
Some useful results:
Remark. The converse of the preceding theorem is not true. Consider \(A=\left[\begin{array}{rrr}3&0&0\\0&4&1\\0&-2&1\end{array} \right]\) in the last example. \(\left[\begin{array}{r}1\\0\\0\end{array}\right]\) and \(\left[\begin{array}{r}0\\-1\\1\end{array}\right]\) are linearly independent eigenvectors of \(A\) and they are eigenvectors corresponding to the same eigenvalue \(3\) of \(A\).
Last edited