Basics of Eigenvalues and Eigenvectors |
Definition.
Let \(A\) be an \(n\times n\) matrix. If \(A\overrightarrow{x}=\lambda \overrightarrow{x}\) for some nonzero vector
\(\overrightarrow{x}\) and some scalar \(\lambda\), then \(\lambda\) is an eigenvalue of \(A\) and
\(\overrightarrow{x}\) is an eigenvector of \(A\) corresponding to \(\lambda\).
Example.
Consider \(A=\left[\begin{array}{rr}1&2\\0&3\end{array} \right],\;\lambda=3,\;
\overrightarrow{v}=\left[\begin{array}{r}1\\1\end{array} \right],\;
\overrightarrow{u}=\left[\begin{array}{r}-2\\1\end{array} \right]\).
Since \(A\overrightarrow{v}
=\left[\begin{array}{rr}1&2\\0&3\end{array} \right]\left[\begin{array}{r}1\\1\end{array} \right]
=\left[\begin{array}{r}3\\3\end{array} \right]
=3\left[\begin{array}{r}1\\1\end{array} \right]
=\lambda\overrightarrow{v}\),
\(3\) is an eigenvalue of \(A\) and \(\overrightarrow{v}\) is an eigenvector of \(A\) corresponding to the
eigenvalue \(3\).
Since \(A\overrightarrow{u}
=\left[\begin{array}{rr}1&2\\0&3\end{array} \right]\left[\begin{array}{r}-2\\1\end{array} \right]
=\left[\begin{array}{r}0\\3\end{array} \right]
\neq \lambda\left[\begin{array}{r}-2\\1\end{array} \right]
=\lambda\overrightarrow{u}\) for all scalars \(\lambda\),
\(\overrightarrow{u}\) is not an eigenvector of \(A\).
Remark.
For a real matrix, an eigenvalue can be a complex number and an eigenvector can be a complex vector.
Example.
Consider \(A=\left[\begin{array}{rr}0&1\\-1&0\end{array} \right]\).
Since \(\left[\begin{array}{rr}0&1\\-1&0\end{array} \right]\left[\begin{array}{r}1\\i\end{array} \right]
=\left[\begin{array}{r}i\\-1\end{array} \right]
=i\left[\begin{array}{r}1\\i\end{array} \right]\),
\(i\) is an eigenvalue of \(A\) and \(\left[\begin{array}{r}1\\i\end{array} \right]\) is an eigenvector of \(A\)
corresponding to the eigenvalue \(i\).
Remark. An eigenvector must be a nonzero vector by definition. So the following are equivalent:
Definition.
\(\det(\lambda I-A)\) is a polynomial of \(\lambda\) and it is the characteristic polynomial of \(A\).
\(\det(\lambda I-A)=0\) is the characteristic equation of \(A\).
Remark.
Since the roots of the characteristic polynomial are the eigenvalues of the \(n\times n\) matrix \(A\), \(A\) has
\(n\) eigenvalues, not necessarily distinct.
Definition.
The multiplicity of a root \(\lambda\) in \(\det(\lambda I-A)\) is the algebraic multiplicity of the eigenvalue
\(\lambda\) of \(A\).
Remark.
If \(\lambda\) is an eigenvalue of \(A\), then \(\operatorname{NS}(A-\lambda I)\) is the union of
\(\{\overrightarrow{0}\}\) and the set of all eigenvectors of \(A\) corresponding to the eigenvalue \(\lambda\).
Definition.
Suppose \(\lambda\) is an eigenvalue of the matrix \(A\). Then
\[\operatorname{NS}(A-\lambda I)=\{\overrightarrow{x}\;|\;(A-\lambda I)\overrightarrow{x}=\overrightarrow{0}\}\]
is the eigenspace of \(A\) corresponding to the eigenvalue \(\lambda\) and \(\operatorname{dim}(\operatorname{NS}(A-\lambda I))\)
is the geometric multiplicity of the eigenvalue \(\lambda\).
Example.
Let \(A=\left[\begin{array}{rrr}3&0&0\\0&4&1\\0&-2&1\end{array} \right]\).
Solution. (a) The characteristic polynomial of \(A\) is
\[\begin{eqnarray*}
\det(\lambda I-A)&=&\left|\begin{array}{ccc}\lambda-3&0&0\\0&\lambda-4&-1\\0&2&\lambda-1\end{array} \right|\\
&=&(\lambda-3)\left|\begin{array}{cc}\lambda-4&-1\\2&\lambda-1\end{array} \right|-0+0\\
&=&(\lambda-3)(\lambda^2-5\lambda+6)\\
&=&(\lambda-3)(\lambda-3)(\lambda-2).
\end{eqnarray*}\]
(b) \(\det(\lambda I-A)=(\lambda-2)(\lambda-3)^2=0\implies \lambda=2,3,3\). So \(2\) and \(3\) are eigenvalue of \(A\) with algebraic multiplicities \(1\) and \(2\) respectively.
(c) The eigenspace of \(A\) corresponding to the eigenvalue \(3\) is
\[\operatorname{NS}(A-3I)=\{\overrightarrow{x}\;|\;(A-3I)\overrightarrow{x}=\overrightarrow{0}\}.\]
\[[A-3I\;|\;\overrightarrow{0}]=\left[\begin{array}{rrr|r}0&0&0&0\\0&1&1&0\\0&-2&-2&0\end{array} \right]
\xrightarrow{2R_2+R_3}
\left[\begin{array}{rrr|r}0&0&0&0\\0&1&1&0\\0&0&0&0\end{array} \right]
\xrightarrow{R_1\leftrightarrow R_2}
\left[\begin{array}{rrr|r}0&\boxed{1}&1&0\\0&0&0&0\\0&0&0&0\end{array} \right]\]
So we get \(x_2+x_3=0\) where \(x_1\) and \(x_3\) are free variable. Thus
\[\overrightarrow{x}=\left[\begin{array}{r}x_1\\x_2\\x_3
\end{array}\right]
=\left[\begin{array}{r}x_1\\-x_3\\x_3
\end{array}\right]
=x_1\left[\begin{array}{r}1\\0\\0\end{array}\right]+
x_3\left[\begin{array}{r}0\\-1\\1\end{array}\right]
\in \operatorname{Span} \left\{\left[\begin{array}{r}1\\0\\0\end{array}\right],\;
\left[\begin{array}{r}0\\-1\\1\end{array}\right]\right\}.\]
Thus the eigenspace of \(A\) corresponding to the eigenvalue \(3\) is
\[\operatorname{NS}(A-3I)=\operatorname{Span} \left\{\left[\begin{array}{r}1\\0\\0\end{array}\right],\;
\left[\begin{array}{r}0\\-1\\1\end{array}\right]\right\},\]
and the geometric multiplicity of the eigenvalue \(3\) is \(\operatorname{dim}(\operatorname{NS}(A-3I))=2\).
The eigenspace of \(A\) corresponding to the eigenvalue \(2\) is
\[\operatorname{NS}(A-2I)=\{\overrightarrow{x}\;|\;(A-2I)\overrightarrow{x}=\overrightarrow{0}\}.\]
\[[A-2I\;|\;\overrightarrow{0}]=\left[\begin{array}{rrr|r}1&0&0&0\\0&2&1&0\\0&-2&-1&0\end{array} \right]
\xrightarrow{R_2+R_3}
\left[\begin{array}{rrr|r}1&0&0&0\\0&2&1&0\\0&0&0&0\end{array} \right]
\xrightarrow{\frac{R_2}{2}}
\left[\begin{array}{rrr|r}\boxed{1}&0&0&0\\0&\boxed{1}&\frac{1}{2}&0\\0&0&0&0\end{array} \right]\]
So we get \(x_1=0,\; x_2+\frac{x_3}{2}=0\) where \(x_3\) is a free variable. Thus
\[\overrightarrow{x}=\left[\begin{array}{r}x_1\\x_2\\x_3
\end{array}\right]
=\left[\begin{array}{r}0\\-\frac{x_3}{2}\\x_3
\end{array}\right]
=\frac{x_3}{2}\left[\begin{array}{r}0\\-1\\2
\end{array}\right]
\in \operatorname{Span} \left\{\left[\begin{array}{r}0\\-1\\2
\end{array}\right]\right\}.\]
Thus the eigenspace of \(A\) corresponding to the eigenvalue \(2\) is
\[\operatorname{NS}(A-2I)=\operatorname{Span} \left\{\left[\begin{array}{r}0\\-1\\2
\end{array}\right]\right\},\]
and the geometric multiplicity of the eigenvalue \(2\) is \(\operatorname{dim}(\operatorname{NS}(A-2I))=1\).
Remark.
Recall that \(\overrightarrow{x}\mapsto A\overrightarrow{x}\) is a linear transformation from \(\mathbb R^n\) to
\(\mathbb R^n\). This linear transformation is invariant on the eigenspaces of \(A\):
If \(\lambda\) is an eigenvalue of \(A\) and \(\overrightarrow{x}\in \operatorname{NS}(A-\lambda I)\),
then \(A\overrightarrow{x}\in \operatorname{NS}(A-\lambda I)\).
Example.
In the preceding example, \(\overrightarrow{x}=\left[\begin{array}{r}4\\-5\\5\end{array}\right]
\in \operatorname{NS}(A-3I)=\operatorname{Span} \left\{\left[\begin{array}{r}1\\0\\0\end{array}\right],\;
\left[\begin{array}{r}0\\-1\\1\end{array}\right]\right\},\)
and also \(A\overrightarrow{x}=A\left[\begin{array}{r}4\\-5\\5\end{array}\right]
=\left[\begin{array}{r}12\\-15\\15\end{array}\right]
=3\left[\begin{array}{r}4\\-5\\5\end{array}\right]
\in \operatorname{NS}(A-3I)=\operatorname{Span} \left\{\left[\begin{array}{r}1\\0\\0\end{array}\right],\;
\left[\begin{array}{r}0\\-1\\1\end{array}\right]\right\}\).
Theorem.(IMT contd.) Let \(A\) be an \(n\times n\) matrix. Then the following are equivalent:
Some useful results:
Theorem.
Let \(A\) be an \(n\times n\) matrix with eigenvalues \(\lambda_1,\lambda_2,\ldots,\lambda_n\). Then
\(\det A=\lambda_1\lambda_2\cdots\lambda_n.\)
Theorem. The eigenvalues of a triangular matrix (e.g., diagonal matrix) are the entries on its main diagonal.
Theorem. Let \(A\) be a square matrix. If \(\lambda\) is an eigenvalue of \(A\), then \(\lambda^k\) is an eigenvalue of \(A^k\).
Theorem. Let \(A\) be an invertible matrix. Then \(\lambda\) is an eigenvalue of \(A\) if and only if \(\frac{1}{\lambda}\) is an eigenvalue of \(A^{-1}\).
Theorem. Let \(A\) be a square matrix. If \(\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overrightarrow{v_k}\) are eigenvectors of \(A\) corresponding to distinct eigenvalues \(\lambda_1,\lambda_2,\ldots,\lambda_k\) of \(A\) respectively, then \(\{\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overrightarrow{v_k}\}\) is linearly independent.
Remark. The converse of the preceding theorem is not true. Consider \(A=\left[\begin{array}{rrr}3&0&0\\0&4&1\\0&-2&1\end{array} \right]\) in the last example. \(\left[\begin{array}{r}1\\0\\0\end{array}\right]\) and \(\left[\begin{array}{r}0\\-1\\1\end{array}\right]\) are linearly independent eigenvectors of \(A\) and they are eigenvectors corresponding to the same eigenvalue \(3\) of \(A\).
Last edited