Basis and Dimension |
Definition. A basis of a nontrivial subspace \(S\) of a vector space \(V\) is a subset \(B\) of \(S\) such that
We define the basis of the trivial subspace \(\{\overrightarrow{0_V}\}\) to be \(B=\varnothing\).
The number of vectors in a basis \(B\) is the dimension of \(S\) denoted by \(\operatorname{dim}(S)\)
or \(\operatorname{dim} S\).
Remark.
If a basis of \(V\) consists of \(n\) vectors, then each basis of \(V\) has exactly \(n\) vectors and
\(\operatorname{dim}(V)=n\). If \(\operatorname{dim}(V)\) is a nonnegative integer, \(V\) is called a
finite-dimensional vector space. Otherwise \(V\) is called an infinite-dimensional vector space.
If \(H\) is a subspace of a finite-dimensional vector space \(V\), then \(\dim H\leq \dim V\)
(See Extension Theorem below).
Example.
Now we present some important theorems regarding bases of a subspace of a vector space. Proofs will be similar to
that in Basis and Dimension in \(\mathbb R^n\).
Theorem.(Unique Representation Theorem)
Let \(S\) be a subspace of a vector space \(V\). Then \(B=\{\overrightarrow{b_1},\overrightarrow{b_2},\ldots,\overrightarrow{b_k}\}\)
is a basis of \(S\) if and only if each vector \(\overrightarrow{v}\) of \(S\) is a unique linear combination of
\(\overrightarrow{b_1},\overrightarrow{b_2},\ldots,\overrightarrow{b_k}\),
i.e.,
\(\overrightarrow{v}=c_1\overrightarrow{b_1}+c_2\overrightarrow{b_2}+\cdots+c_k\overrightarrow{b_k}\) for unique scalars
\(c_1,c_2,\ldots,c_k\).
Theorem.(Reduction Theorem)
Let \(S\) be a subspace of a vector space \(V\). If a set \(B=\{\overrightarrow{b_1},\overrightarrow{b_2},\ldots,\overrightarrow{b_k}\}\)
of vectors of \(S\) spans \(S\), then either \(B\) is a basis of \(S\) or a subset of \(B\) is a basis of \(S\).
Theorem.(Extension Theorem)
Let \(S\) be a subspace of a vector space \(V\). If a set \(B=\{\overrightarrow{b_1},\overrightarrow{b_2},\ldots,\overrightarrow{b_k}\}\)
of vectors of \(S\) is linearly independent, then either \(B\) is a basis of \(S\) or a superset of \(B\) is a basis of
\(S\).
Example. For \(\overrightarrow{p_1}(t)=t+2t^2\), \(\overrightarrow{p_2}(t)=2+2t^2\), and \(\overrightarrow{p_3}(t)=1-t-t^2\) in \(P_2\), \(\overrightarrow{p_2}=2\overrightarrow{p_1}+2\overrightarrow{p_3}\). Then \(\operatorname{Span} \{\overrightarrow{p_1},\;\overrightarrow{p_2},\;\overrightarrow{p_3}\}=\operatorname{Span}\{\overrightarrow{p_1},\;\overrightarrow{p_3}\}\) and \(\{\overrightarrow{p_1},\;\overrightarrow{p_3}\}\) is a basis of the subspace \(\operatorname{Span}\{\overrightarrow{p_1},\;\overrightarrow{p_2},\;\overrightarrow{p_3}\}\) of \(P_2\).
Last edited