Numerical Analysis Home

Introduction to Linear Algebra

    


Matrix: An \(m\times n\) matrix \(A\) is an \(m\)-by-\(n\) array of scalars from a field (for example real numbers) of the form \[A=\left[\begin{array}{cccc} a_{11}&a_{12}&\cdots &a_{1n}\\ a_{21}&a_{22}&\cdots &a_{2n}\\ \vdots&\vdots&\ddots &\vdots\\ a_{m1}&a_{m2}&\cdots &a_{mn} \end{array}\right].\] The order (or size) of \(A\) is \(m\times n\) (read as m by n) if \(A\) has \(m\) rows and \(n\) columns. The \((i,j)\)-entry of \(A=[a_{i,j}]\) is \(a_{i,j}\).

For example, \(A=\left[\begin{array}{rrr}1&2&0\\-3&0&-1\end{array} \right]\) is a \(2\times 3\) real matrix. The \((2,3)\)-entry of \(A\) is \(-1\).

Useful Matrices:


Position vector of a point in the 2-space \(\mathbb R^2\)

Matrix Operations:

Norm: We will use only two norms of a vector \(\overrightarrow{x}=\left[\begin{array}{c}x_1\\\vdots\\x_n \end{array} \right]\):

  1. \(l_2\) norm (Euclidean norm): \(||\overrightarrow{x}||_2=\sqrt{x_1^2+\cdots+ x_n^2}\)

  2. \(l_{\infty}\) norm: \(||\overrightarrow{x}||_{\infty}=\displaystyle\max_{1\leq i\leq n} |x_i|\)

For \(\overrightarrow{x}=[-2,0,1]^T\), \(||\overrightarrow{x}||_2=\sqrt{5}\) and \(||\overrightarrow{x}||_{\infty}=2\). Note that \(||\overrightarrow{x}||_{\infty}\leq ||\overrightarrow{x}||_2\) for all \(\overrightarrow{x}\).

Transpose: The transpose of an \(m\times n\) matrix \(A\), denoted by \(A^T\), is an \(n\times m\) matrix whose columns are corresponding rows of \(A\), i.e., \((A^T)_{ij}=A_{ji}\).
Example. If \(A=\left[\begin{array}{rrr}1&2&0\\-3&0&-1\end{array} \right]\), then \(A^T=\left[\begin{array}{rr}1&-3\\2&0\\0&-1\end{array} \right]\).

Scalar Multiplication: Let \(A\) be a matrix and \(c\) be a scalar. The scalar multiple, denoted by \(cA\), is the matrix whose entries are \(c\) times the corresponding entries of \(A\).
Example. If \(A=\left[\begin{array}{rrr}1&2&0\\-3&0&-1\end{array} \right]\), then \(-2A=\left[\begin{array}{rrr}-2&-4&0\\6&0&2\end{array} \right]\).

Sum: If \(A\) and \(B\) are \(m\times n\) matrices, then the sum \(A+B\) is the \(m\times n\) matrix whose entries are the sum of the corresponding entries of \(A\) and \(B\), i.e., \((A+B)_{ij}=A_{ij}+B_{ij}\).
Example. If \(A=\left[\begin{array}{rrr}1&2&0\\-3&0&-1\end{array} \right]\) and \(B=\left[\begin{array}{rrr}0&-2&0\\3&0&2\end{array} \right]\), then \(A+B=\left[\begin{array}{rrr}1&0&0\\0&0&1\end{array} \right]\).

Multiplication:
Matrix-vector multiplication: If \(A\) is an \(m\times n\) matrix and \(\overrightarrow{x}\) is an \(n\)-dimensional vector, then their product \(A\overrightarrow{x}\) is an \(n\)-dimensional vector whose \((i,1)\)-entry is \(a_{i1}x_1+a_{i2}x_2+\cdots+a_{im}x_n\), the dot product of the row \(i\) of \(A\) and \(\overrightarrow{x}\). Note that \[A\overrightarrow{x}=\left[\begin{array}{c} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n\\ \vdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n\end{array}\right] = x_1\left[\begin{array}{c} a_{11}\\ a_{21}\\ \vdots\\ a_{m1} \end{array}\right]+ x_2\left[\begin{array}{c} a_{12}\\ a_{22}\\ \vdots\\ a_{m2} \end{array}\right]+\cdots+ x_n\left[\begin{array}{c} a_{1n}\\ a_{2n}\\ \vdots\\ a_{mn} \end{array}\right].\] Example. If \(A=\left[\begin{array}{rrr}1&2&0\\-3&0&-1\end{array} \right]\) and \(\overrightarrow{x}=\left[\begin{array}{r}1\\-1\\0\end{array} \right]\), then \(A\overrightarrow{x}=\left[\begin{array}{r}-1\\-3\end{array} \right]\) which is a linear combination of first and second columns of \(A\) with weights \(1\) and \(-1\) respectively.

Matrix-matrix multiplication: If \(A\) is an \(m\times n\) matrix and \(B\) is an \(n\times p\) matrix, then their product \(AB\) is an \(m\times p\) matrix whose \((i,j)\)-entry is the dot product the row \(i\) of \(A\) and the column \(j\) of \(B\). \[(AB)_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{im}b_{mj}\]
Example. For \(A=\left[\begin{array}{rrr}1&2&2\\0&0&2\end{array} \right]\) and \(B=\left[\begin{array}{rr}2&-2\\0&0\\1&1\end{array} \right]\), we have \(AB=\left[\begin{array}{rr}4&0\\2&2\end{array} \right].\)

Determinant: The determinant of an \(n\times n\) matrix \(A\) is denoted by \(\det A\) and \(|A|\). It is defined recursively. By hand we will only find determinant of order 2 and 3. \[\left\vert\begin{array}{rr}a_{11}&a_{12}\\a_{21}&a_{22}\end{array} \right\vert =a_{11}a_{22}-a_{12}a_{21}.\] \[\left\vert \begin{array}{rrr}a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33}\end{array} \right\vert =a_{11}\;\begin{vmatrix}a_{22}&a_{23}\\a_{32}&a_{33}\end{vmatrix} -a_{12}\;\begin{vmatrix}a_{21}&a_{23}\\a_{31}&a_{33}\end{vmatrix} +a_{13}\;\begin{vmatrix}a_{21}&a_{22}\\a_{31}&a_{32}\end{vmatrix}\;.\]
Example. \(\left\vert\begin{array}{rrr} 2&1&7\\ -3&0&-8\\ 0&1&-3\end{array} \right\vert =2\;\begin{vmatrix}0&-8\\1&-3\end{vmatrix} -1\;\begin{vmatrix}-3&-8\\0&-3\end{vmatrix} +7\;\begin{vmatrix}-3&0\\0&1\end{vmatrix}=-14.\)

Inverse of a matrix: An \(n\times n\) matrix \(A\) is called invertible if there is an \(n\times n\) matrix \(B\) such that \(AB=BA=I_n.\) Here \(B\) is called the inverse of \(A\) which is denoted by \(A^{-1}\). So \[AA^{-1}=A^{-1}A=I_n.\]
Example. \(\left[ \begin{array}{rr}a&b\\c&d\end{array} \right]^{-1}=\displaystyle\frac{1}{ad-bc}\left[ \begin{array}{rr}d&-b\\-c&a\end{array} \right]\).

Theorem. An \(n\times n\) matrix \(A\) is invertible iff \(\det A\neq 0\).


Last edited