DiffEq Home

Linear Homogeneous ODEs and Wronskian

    


Consider the linear homogeneous second order ODE \[y''+p(x)y'+q(x)y=0. \;\;\;\;(31)\] Principle of superposition: If \(y_1\) and \(y_2\) are solutions of (31), then \(c_1y_1+c_2y_2\) is also a solution of (31). (verify)

Question. If \(y\) is a solution of (31), is it true that \(y=c_1y_1+c_2y_2\) for some scalars \(c_1\) and \(c_2\)?
Answer. Yes if \(y_1\) and \(y_2\) are linearly independent functions.

Definition. \(y_1,y_2,\ldots,y_n\) are linearly independent functions if \[c_1y_1+c_2y_2+\cdots+c_ny_n=0\implies c_1=c_2=\cdots=c_n=0.\]
Theorem. \(y_1,y_2,\ldots,y_n\) are linearly dependent functions if and only if at least one of them is a linear combination of others.

Example.

  1. \(y_1=x+1\) and \(y_2=x-1\) are linearly independent. Because if \(c_1y_1+c_2y_2=0\), then \[\begin{align*} &c_1(x+1)+c_2(x-1)=0\\ \implies& (c_1+c_2)x+(c_1-c_2)=0\\ \implies& c_1+c_2=0,\; c_1-c_2=0\\ \implies& c_1=c_2=0. \end{align*}\]
  2. \(y_1=e^x\) and \(y_2=e^{2x}\) are linearly independent.

  3. \(y_1=x\) and \(y_2=2x\) are linearly dependent since \(-2y_1+y_2=0\).

The Wronskian of \(y_1\) and \(y_2\) is denoted by \(W(y_1,\,y_2)\) and defined by \[W(y_1,\,y_2)=\begin{array}{|cc|}y_1&y_2\\y_1'&y_2'\end{array}=y_1y_2'-y_2y_1'.\]
Example.

  1. \(W(x+1,\,x-1)=\,\begin{array}{|cc|}x+1&x-1\\(x+1)'&(x-1)'\end{array}=\,\begin{array}{|cc|}x+1&x-1\\1&1\end{array}=(x+1)\cdot 1-(x-1)\cdot 1=2\neq 0.\)

  2. \(W(e^x,\,e^{2x})=\,\begin{array}{|cc|} e^x&e^{2x}\\(e^x)'&(e^{2x})'\end{array}=\,\begin{array}{|cc|}e^x&e^{2x}\\e^x&2e^{2x}\end{array}=e^x\cdot 2e^{2x}-e^{2x}\cdot e^x=e^{3x}\neq 0.\)

Theorem. \(y_1\) and \(y_2\) are linearly independent functions if and only if \(W(y_1,\,y_2)\neq 0\). In other words, \(y_1\) and \(y_2\) are linearly dependent functions if and only if \(W(y_1,\,y_2)=0\).

\((\Longrightarrow)\) Assume that \(y_1\) and \(y_2\) are linearly dependent functions. Then one of \(y_1\) and \(y_2\) is a multiple of the other, say \(y_2=cy_1\) for some scalar \(c\). Then \[W(y_1,\,y_2)=W(y_1,\,cy_1)=y_1\cdot c_1y_1'-cy_1\cdot y_1'=0.\] \((\Longleftarrow)\) Assume that \(W(y_1,\,y_2)=y_1y_2'-y_2y_1'=0\). Note that \[\frac{d}{dx}\left(\frac{y_2}{y_1} \right)=\frac{y_1y_2'-y_2y_1'}{y_1^2}=0.\] Then \(\frac{y_2}{y_1}=c,\) constant. Thus \(y_2=cy_1\) and consequently \(y_1\) and \(y_2\) are linearly dependent functions. \(\blacksquare\)

Theorem. Suppose that \(y_1\) and \(y_2\) are solutions of the IVP \[y''+p(x)y'+q(x)y=0,\;\; y(x_0)=r,\, y'(x_0)=s.\] Then \(c_1y_1+c_2y_2\) is also a solution for some scalars \(c_1\) and \(c_2\) if and only if \(W(y_1,\,y_2)(x_0)\neq 0\).

\((\Longleftarrow)\) Assume that \(W(y_1,\,y_2)(x_0)\neq 0\). We will find \(c_1\) and \(c_2\) such that \(c_1y_1+c_2y_2\) is also a solution of the given IVP. First note that since \(y_1\) and \(y_2\) are solutions of \(y''+p(x)y'+q(x)y=0\), \(c_1y_1+c_2y_2\) is also a solution of \(y''+p(x)y'+q(x)y=0\) by the principle of superposition. Now we will find \(c_1\) and \(c_2\) such that \(c_1y_1+c_2y_2\) satisfies the initial conditions. \[\begin{align*} y(x_0)=r&\implies c_1y_1(x_0)+c_2y_2(x_0)=r\\ y(x_0)=s&\implies c_1y_1'(x_0)+c_2y_2'(x_0)=s \end{align*}\] Since \(W(y_1,\,y_2)(x_0)\neq 0\), solving for \(c_1\) and \(c_2\) we get \[c_1=\frac{ry_2'(x_0)-sy_2(x_0)}{y_1(x_0)y_2'(x_0)-y_2(x_0)y_1'(x_0)}=\frac{ry_2'(x_0)-sy_2(x_0)}{W(y_1,\,y_2)(x_0)},\] \[c_2=\frac{-ry_1'(x_0)+sy_1(x_0)}{y_1(x_0)y_2'(x_0)-y_2(x_0)y_1'(x_0)}=\frac{-ry_1'(x_0)+sy_1(x_0)}{W(y_1,\,y_2)(x_0)}.\] \((\Longrightarrow)\) Similar. \(\blacksquare\)

Theorem. Suppose that \(y_1\) and \(y_2\) are solutions of \[y''+p(x)y'+q(x)y=0.\] Then any solution \(y\) can be written as \(y=c_1y_1+c_2y_2\) for some scalars \(c_1\) and \(c_2\) if and only if \(W(y_1,\,y_2)(x_0)\neq 0\) for some \(x_0\).

\((\Longleftarrow)\) Assume \(W(y_1,\,y_2)(x_0)\neq 0\). Consider an arbitrary solution \(y=\phi(x)\) of the IVP \[y''+p(x)y'+q(x)y=0,\; y(x_0)=\phi(x_0),y'(x_0)=\phi'(x_0).\] By the preceding theorem \(y=c_1y_1+c_2y_2\) is a solution for some scalars \(c_1\) and \(c_2\). Then \(\phi=y=c_1y_1+c_2y_2\) by the uniqueness of the solution of the preceding IVP.

\((\Longrightarrow)\) It follows from the linear independence of the fundamental solutions \(y_1\) and \(y_2\). \(\blacksquare\)

Note:

  1. It can be shown for \(y_1\) and \(y_2\) in the preceding theorem that \(W(y_1,\,y_2)(x)=0\) either for all values of \(x\) or no values of \(x\). (see Abel's theorem)

  2. When \(W(y_1,\,y_2)\neq 0\), \(y_1\) and \(y_2\) are linearly independent and any solution \(y\) can be written as \(y=c_1y_1+c_2y_2\) for some scalars \(c_1\) and \(c_2\). That is why they are called fundamental solutions of \(y''+p(x)y'+q(x)y=0\) and the general solution of \(y''+p(x)y'+q(x)y=0\) is \[y=c_1y_1+c_2y_2\] for arbitrary scalars \(c_1\) and \(c_2\).

Example. Recall from Section 3.1 that \(y''-2y'-3y=0\) has the general solution \[y=c_1e^{-x}+c_2e^{3x}.\] Here \(y_1=e^{-x}\) and \(y_2=e^{3x}\) are fundamental solutions because \[W(e^{-x},\,e^{3x})=\,\begin{array}{|cc|}e^{-x}&e^{3x}\\(e^{-x})'&(e^{3x})'\end{array} =\,\begin{array}{|cc|}e^{-x}&e^{3x}\\-e^{-x}&3e^{3x}\end{array} =e^{-x}\cdot 3e^{3x}-e^{3x}\cdot(-e^{-x})=4e^{2x}\neq 0.\]
Example. Consider \(y_1=e^{r_1x}\) and \(y_2=e^{r_2x}\), \(r_1\neq r_2\). \[W(e^{r_1x},\,e^{r_2x})=\,\begin{array}{|cc|}e^{r_1x}&e^{r_2x}\\(e^{r_1x})'&(e^{r_2x})'\end{array} =\,\begin{array}{|cc|}e^{r_1x}&e^{r_2x}\\r_1e^{r_1x}&r_2e^{r_2x}\end{array} =e^{r_1x}\cdot r_2e^{r_2x}-e^{r_2x}\cdot r_1e^{r_1x})=(r_2-r_1)e^{(r_1+r_2)x}\neq 0.\] For \(ay''+by'+cy=0\), if the roots \(r_1\) and \(r_2\) of the characteristic equation \(ar^2+br+c=0\) are real and distinct, then \(y=e^{r_1x}\) and \(y=e^{r_2x}\) are fundamental solutions and the general solution is \[y=c_1e^{r_1x}+c_2e^{r_2x}.\]


Last edited