DiffEq Home

Introduction to Systems of Linear ODEs

    


Suppose \(x_1,x_2,\ldots,x_n\) are \(n\) functions of \(t\). Consider the following system of \(n\) linear ODEs: \[\begin{eqnarray*} \begin{array}{rccccccccc} x_1'=& a_{11}(t)x_1&+&a_{12}(t)x_2&+&\cdots &+&a_{1n}(t)x_n&+&g_1(t)\\ x_2'=& a_{21}(t)x_1&+&a_{22}(t)x_2&+&\cdots &+&a_{2n}(t)x_n&+&g_2(t)\\ \vdots&\vdots&&\vdots&& &&\vdots&&\vdots\\ x_n'=& a_{m1}(t)x_1&+&a_{m2}(t)x_2&+&\cdots &+&a_{mn}(t)x_n&+&g_n(t).\\ \end{array} \end{eqnarray*}\] It can be simply written in the following matrix form: \[\begin{equation} \overrightarrow{x}'=A\overrightarrow{x}+\overrightarrow{g}, \;\;\;\;(50) \end{equation}\] where \(A=\left[\begin{array}{cccc} a_{11}&a_{12}&\cdots &a_{1n}\\ a_{21}&a_{22}&\cdots &a_{2n}\\ \vdots&\vdots& &\vdots\\ a_{n1}&a_{n2}&\cdots &a_{nn} \end{array}\right],\; \overrightarrow{x}=\left[\begin{array}{c} x_1\\x_2\\ \vdots\\x_n\end{array} \right], \mbox{ and } \overrightarrow{g}=\left[\begin{array}{c} g_1\\g_2\\ \vdots\\g_n \end{array} \right].\) \(A\) is called the coefficient matrix of (50). When \(\overrightarrow{g}=\overrightarrow{0}\), (50) is a homogeneous system. Similarly when \(\overrightarrow{g}\neq\overrightarrow{0}\), (50) is a nonhomogeneous system


Example. A multiple mass-spring system can have the following equations of motion: \[\begin{eqnarray*} m_1x_1''&= &-k_1x_1+k_2(x_2-x_1)+F_1(t)\\ m_2x_2''&= &-k_2(x_2-x_1)+F_2(t). \end{eqnarray*}\]
Example. Write the following system in matrix form. \[\begin{array}{ccrcrcr} x_1' &=& x_1 &+& x_2 &+& e^t\\ x_2' &=& 4x_1 &-& 2x_2 &+& t^2 \end{array} \] Solution. \[\left[\begin{array}{c} x_1'\\x_2'\end{array} \right] =\left[\begin{array}{c}x_1+x_2+e^t\\4x_1-2x_2+t^2\end{array} \right] =\left[\begin{array}{rr} 1&1\\4&-2\end{array} \right]\left[\begin{array}{c} x_1\\x_2\end{array} \right] +\left[\begin{array}{c} e^t\\t^2\end{array} \right]\] \[\text{i.e., } \overrightarrow{x}'=A\overrightarrow{x}+\overrightarrow{g}, \] where \(A=\left[\begin{array}{rr} 1&1\\4&-2\end{array} \right],\; \overrightarrow{x}=\left[\begin{array}{c} x_1\\x_2\end{array} \right], \mbox{ and } \overrightarrow{g}=\left[\begin{array}{c} e^t\\t^2\end{array} \right].\)


Example. Write the following IVP in matrix form. \[\begin{eqnarray*} &\begin{array}{ccrcr} x_1' &=& 4x_1 &-& 3x_2\\ x_2' &=& 8x_1 &-& 6x_2 \end{array}\\ &x_1(0)=5,\; x_2(0)=6. \end{eqnarray*}\] Solution. \[\overrightarrow{x}'=\left[\begin{array}{rr} 4&-3\\8&-6\end{array} \right]\overrightarrow{x}, \] where \(\overrightarrow{x}(0)=\left[\begin{array}{c} 5\\6\end{array} \right] \mbox{ and } \overrightarrow{x}=\left[\begin{array}{c} x_1\\x_2\end{array} \right].\)


We can transform \(n\)th order linear ODE \(y^{(n)}=F(t,y,y',\ldots,y^{(n-1)})\) to the following system of \(n\) variables \(x_1=y,x_2=y',\ldots,x_n=y^{(n-1)}\): \[\begin{eqnarray*} x_1'&=& x_2\\ x_2'&=& x_3\\ &\vdots&\\ x_{n-1}'&=& x_n\\ x_n'&=& F(t,x_1,x_2,\ldots,x_n). \end{eqnarray*}\]
Example. Convert the following third order linear ODE to a system of linear ODEs and write its matrix form. \[y'''=e^ty''-ty'+\cos ty-5t.\] Solution. Let \(x_1=y,x_2=y',x_3=y''\). Then \[\begin{eqnarray*} x_1'&=& x_2\\ x_2'&=& x_3\\ x_3'&=& e^tx_3-tx_2+\cos tx_1-5t. \end{eqnarray*}\] Its matrix form is \[\overrightarrow{x}'=\left[\begin{array}{rrr} 0&1&0\\0&0&1\\\cos t&-t&e^t\end{array} \right]\overrightarrow{x}+\left[\begin{array}{c} 0\\0\\-5t\end{array} \right], \] where \(\overrightarrow{x}=[x_1,\; x_2,\; x_3]^T\).


Last edited