Separable ODEs |
A separable ODE is of the form
\[\frac{dy}{dx}=\frac{M(x)}{N(y)}.\]
Steps to solve:
\[\begin{align*}
N(y)\,dy&=M(x)\, dx\\
\int N(y)\,dy&=\int M(x)\, dx + c.\\
\end{align*}\]
Example.
Solve the following IVP (initial value problem)
\begin{equation}\label{7}
\frac{dy}{dx}=\frac{2x-3}{y-5},\; y(0)=3
\end{equation}
and find the valid interval of the solution. Find the maximum value of the solution.
Solution.
\begin{align*}
\frac{dy}{dx}&=\frac{2x-3}{y-5} \\
(y-5)\,dy&=(2x-3)\,dx\\
\int (y-5)\,dy&=\int (2x-3)\,dx\\
\frac{y^2}{2}-5y&=2\frac{x^2}{2}-3x+c\\
y^2-10y&=2(x^2-3x+c)\\
y^2-10y-2x^2+6x-2c&=0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (8)
\end{align*}
Note that the initial condition is \(y(0)=3\). So we have
\[\begin{align*}
3^2-10\cdot 3-2c&=0\\
2c&=-21
\end{align*}\]
From (8) we get
\[\begin{align*}
y^2-10y-2x^2+6x+21&=0 \text{ (implicit solution)}\\
y&=\frac{10\pm \sqrt{100-4(-2x^2+6x+21)}}{2}\\
y&=\frac{10\pm 2\sqrt{25-(-2x^2+6x+21)}}{2}\\
y&=5\pm \sqrt{2x^2-6x+4}
\end{align*}\]
So we have two possible solutions:
\[y=5+ \sqrt{2x^2-6x+4} \text{ and } y=5- \sqrt{2x^2-6x+4}.\]
Note that the first one does note satisfy the initial condition \(y(0)=3\). Thus the solution is
\[y=5- \sqrt{2x^2-6x+4} \text{ (explicit solution)}.\]
Obviously the maximum value of the solution is 5 because \(\sqrt{2x^2-6x+4}\geq 0\). The solution is defined when
\[\begin{align*}
2x^2-6x+4&\geq 0\\
2(x^2-3x+2)&\geq 0\\
2(x-1)(x-2)&\geq 0
\end{align*}\]
The domain of \(y\) is \((-\infty,1]\cup [2,\infty)\). Because of the initial condition \(y(0)=3\),
the valid interval of the solution is \((-\infty,1]\).
Example.
Solve the following ODE.
\[\begin{equation}
\frac{dy}{dx}=e^{-y}x\cos x
\end{equation}\]
Solution.
\[\begin{align*}
\frac{dy}{dx}&=\frac{x\cos x}{e^y}&&\\
e^y\, dy&=x\cos x\, dx&\\
\int e^y\, dy&=\int x\cos x\, dx&\\
e^y &=\int u\, dv && u=x,\, dv=\cos x\, dx\\
&=uv-\int v\, du && du=dx,\, v=\int dv=\int \cos x\, dx=\sin x\\
&=x\sin x-\int \sin x\, dx &&\\
&=x\sin x+\cos x +c &&
\end{align*}\]
The general solution is \(y=\ln|x\sin x+\cos x +c|\).
Substitution for homogeneous ODEs:
The ODE \(\displaystyle\frac{dy}{dx}=f(x,y)\) is called homogeneous if \(f(x,y)\) is a function of \(\displaystyle\frac{y}{x}\).
Steps to solve: Substitute \(v=y/x\) or, \(y=vx\). Then \(\displaystyle\frac{dy}{dx}=x\displaystyle\frac{dv}{dx}+v\).
Write \(f(x,y)\) as a function of \(v\). Then it becomes a separable ODE of \(v\) and \(x\).
Example.
Solve the following ODE.
\[\begin{equation*}
\frac{dy}{dx}=\frac{x^2+3y^2}{2xy}
\end{equation*}\]
Solution.
\[\begin{align}
\frac{dy}{dx}&=\frac{(x^2+3y^2)/x^2}{2xy/x^2}\nonumber\\
\frac{dy}{dx}&=\frac{1+3(y/x)^2}{2(y/x)} \;\;\;\;\; (9)
\end{align}\]
Let \(v=y/x\) or, \(y=vx\). Then \(\displaystyle\frac{dy}{dx}=x\displaystyle\frac{dv}{dx}+v\). So from (9) we get
\[\begin{align}
x\frac{dv}{dx}+v&=\frac{1+3v^2}{2v}\nonumber\\
x\frac{dv}{dx}&=\frac{1+3v^2}{2v}-v=\frac{1+v^2}{2v}\nonumber\\
\frac{2v}{1+v^2}\, dv&=\frac{dx}{x} \nonumber
\end{align}\]
\[\begin{align}
\int\frac{2v}{1+v^2}\, dv&=\int \frac{dx}{x} \text{ (substitute } u=1+v^2) \nonumber\\
\ln|1+v^2|&=\ln|x|+\ln c \nonumber\\
\ln|1+v^2|&=\ln|cx| \nonumber\\
1+v^2&=cx \nonumber\\
1+\frac{y^2}{x^2}&=cx \nonumber\\
x^2+y^2&=cx^3 \nonumber
\end{align}\]
Last edited