Consider the linear nonhomogeneous second order ODE
\[y^{(n)}+p_1(x)y^{(n-1)}+p_2(x)y^{(n-2)}+\cdots+p_n(x)y=g(x). \;\;\;\;(47)\]
To find a particular solution of the ODE (47) use the following table:
\[
\begin{array}{|c|c|}
\hline g(x)&y_p\\
\hline c_0x^n+c_1x^{n-1}+\cdots+c_n & x^s(a_0x^n+a_1x^{n-1}+\cdots+a_n)\\
\hline (c_0x^n+c_1x^{n-1}+\cdots+c_n)e^{rx} & x^s(a_0x^n+a_1x^{n-1}+\cdots+a_n)e^{rx}\\
\hline (c_0x^n+c_1x^{n-1}+\cdots+c_n)\cos(\theta x), & x^s[(a_0x^n+a_1x^{n-1}+\cdots+a_n)\cos(\theta x)+\\
(c_0x^n+c_1x^{n-1}+\cdots+c_n)\sin(\theta x)\; & \;(b_0x^n+b_1x^{n-1}+\cdots+b_n)\sin(\theta x)]\\
\hline (c_0x^n+c_1x^{n-1}+\cdots+c_n)\cos(\theta x)e^{rx}, & x^s[(a_0x^n+a_1x^{n-1}+\cdots+a_n)\cos(\theta x)+\\
(c_0x^n+c_1x^{n-1}+\cdots+c_n)\sin(\theta x)e^{rx}\; & (b_0x^n+b_1x^{n-1}+\cdots+b_n)\sin(\theta x)]e^{rx}\\
\hline
\end{array}\]
where \(s\) is the smallest nonnegative integer \((s = 0, 1, 2,\ldots,n)\) that will ensure that no term
in \(y_p\) is a solution of the corresponding homogeneous equation.
Example.
Find the general solution.
- \((D^3+2D^2-3D)y=16xe^{x}\)
- \((D^3+2D^2-3D)y=-10x\sin x\)
- \((D^3+2D^2-3D)y=16xe^{x}-10x\sin x\)
Solution. The characteristic equation is
\[\begin{align*}
r^3+2r^2-3r&=0\\
r(r-1)(r+3)&=0\\
r&=0,-3,1.
\end{align*}\]
So the homogeneous solution is
\[y_h=c_1+c_2e^{-3x}+c_3e^{x},\]
for arbitrary constants \(c_1,c_2\), and \(c_3\). Now we will find a particular solution of the nonhomogeneous ODE.
- Let \(y_p=(ax+b)e^{x}\) be a particular solution for some constants \(a,b\). Note that \(e^x\) is already
in the homogeneous solution. So let \(y_p=x(ax+b)e^{x}=(ax^2+bx)e^{x}\) be a particular solution for some constants \(a,b\).
Then
\[\begin{align*}
y_p'&=[ax^2+(2a+b)x+b]e^{x},\\
y_p''&=[ax^2+(4a+b)x+2a+2b]e^{x},\\
y_p'''&=[ax^2+(6a+b)x+6a+3b]e^{x}.
\end{align*}\]
Plugging these into \(y_p'''+2y_p''-3y_p'=16e^{x}\), we get
\[\begin{align*}
[ax^2+(6a+b)x+6a+3b]e^{x}+2\cdot [ax^2+(4a+b)x+2a+2b]e^{x}-3\cdot [ax^2+(2a+b)x+b]e^{x}&=16xe^{x}\\
[8ax+10a+4b]e^{2x}&=16xe^{x}\\
8ax+10a+4b&=16x.
\end{align*}\]
Comparing the coefficient \(x\) and the constant term in LHS and RHS, we get
\[\begin{align*}
8a&=16 & 10a+4b&=0
\end{align*}\]
Solving we get \(a=2,\; b=-5\). So \(y_p=(2x^2-5x)e^{x}\) is a particular solution. Thus the general solution is
\[y=y_h+y_p=c_1+c_2e^{-3x}+c_3e^{x}+(2x^2-5x)e^{x}.\]
- Let \(y_p=(ax+b)\cos x+(cx+d)\sin x\) be a particular solution for some constants \(a,b,c,d\). Then
\[\begin{align*}
y_p'&=(cx+a+d)\cos x+(-ax-b+c)\sin x,\\
y_p''&=(-ax-b+2c)\cos x+(-cx-2a-d)\sin x,\\
y_p'''&=(-cx-3a-d)\cos x+(ax+b-3c)\sin x.
\end{align*}\]
Plugging these into \(y_p'''+2y_p''-3y_p'=-10x\sin x\), we get
\[\begin{align*}
[(-cx-3a-d)\cos x+(ax+b-3c)\sin x]+2[(-ax-b+2c)\cos x+(-cx-2a-d)\sin x]&\\
-3[(cx+a+d)\cos x+(-ax-b+c)\sin x]&=-10x\sin x\\
(-2a-4c)x\cos x+(-6a-2b+4c-4d)\cos x+(4a-2c)x\sin x+(-4a+4b-6c-2d)\sin x&=-10x\sin x
\end{align*}\]
Comparing the coefficients of \(x\cos x,\,\cos x,\,x\sin x\), and \(\sin x\) in LHS and RHS, we get
\[\begin{align*}
-2a-4c=0, && -6a-2b+4c-4d=0, && 4a-2c=-10, && -4a+4b-6c-2d=0
\end{align*}\]
Solving we get \(a=-2,\; b=6/5,\; c=1,\; d=17/5\). So
\[y_p=(-2x+6/5)\cos x+(x+17/5)\sin x\] is a particular solution. Thus the general solution is
\[y=y_h+y_p=c_1+c_2e^{-3x}+c_3e^{x}+(-2x+6/5)\cos x+(x+17/5)\sin x.\]
- By preceding two parts and a theorem, \((2x^2-5x)e^{x}+(-2x+6/5)\cos x+(x+17/5)\sin x\) is a particular solution. Thus the general solution is
\[y=c_1+c_2e^{-3x}+c_3e^{x}+(2x^2-5x)e^{x}+(-2x+6/5)\cos x+(x+17/5)\sin x.\]
Last edited