Separable Differential Equations |
A differential equation is an equation containing a function and its derivatives.
Example.
A differential equation that does not contain partial derivatives is called an ordinary differential equations (ODE).
Note that an ODE has only one independent variable. The order of a differential equation is the the order
of the highest derivative in it. Differential equations in above examples 1 and 2 have order 1. Differential equation
in example 3 has order 2.
A separable ODE is of the form
\[\frac{dy}{dx}=\frac{M(x)}{N(y)}.\]
Steps to solve:
\[\begin{align*}
N(y)\,dy&=M(x)\, dx\\
\int N(y)\,dy&=\int M(x)\, dx + c.\\
\end{align*}\]
Example.
Solve the following IVP (initial value problem)
\[\begin{equation}\label{7}
\frac{dy}{dx}=\frac{2x-3}{y-5},\; y(0)=3
\end{equation}\]
and find the valid interval of the solution. Find the maximum value of the solution.
Solution.
\[\begin{align}
\frac{dy}{dx}&=\frac{2x-3}{y-5} \nonumber\\
(y-5)\,dy&=(2x-3)\,dx\nonumber\\
\int (y-5)\,dy&=\int (2x-3)\,dx\nonumber\\
\frac{y^2}{2}-5y&=2\frac{x^2}{2}-3x+c\nonumber\\
y^2-10y&=2(x^2-3x+c)\nonumber\\
y^2-10y-2x^2+6x-2c&=0 \;\;\;\;\;\;\;\; (1)
\end{align}\]
Note that the initial condition is \(y(0)=3\). So we have
\[\begin{align*}
3^2-10\cdot 3-2c&=0\\
2c&=-21
\end{align*}\]
From (1) we get
\[\begin{align*}
y^2-10y-2x^2+6x+21&=0 \text{ (implicit solution)}\\
y&=\frac{10\pm \sqrt{100-4(-2x^2+6x+21)}}{2}\\
y&=\frac{10\pm 2\sqrt{25-(-2x^2+6x+21)}}{2}\\
y&=5\pm \sqrt{2x^2-6x+4}
\end{align*}\]
So we have two possible solutions:
\[y=5+ \sqrt{2x^2-6x+4} \text{ and } y=5- \sqrt{2x^2-6x+4}.\]
Note that the first one does note satisfy the initial condition \(y(0)=3\). Thus the solution is
\[y=5- \sqrt{2x^2-6x+4} \text{ (explicit solution)}.\]
Obviously the maximum value of the solution is 5 because \(\sqrt{2x^2-6x+4}\geq 0\). The solution is defined when
\[\begin{align*}
2x^2-6x+4&\geq 0\\
2(x^2-3x+2)&\geq 0\\
2(x-1)(x-2)&\geq 0
\end{align*}\]
The domain of \(y\) is \((-\infty,1]\cup [2,\infty)\). Because of the initial condition \(y(0)=3\),
the valid interval of the solution is \((-\infty,1]\).
Example. Solve the following ODE. \[ \frac{dy}{dx}=e^{-y}x\cos x \] Solution. \[\begin{align*} \frac{dy}{dx}&=\frac{x\cos x}{e^y}&&\\ e^y\, dy&=x\cos x\, dx&\\ \int e^y\, dy&=\int x\cos x\, dx&\\ e^y &=\int u\, dv && u=x,\, dv=\cos x\, dx\\ &=uv-\int v\, du && du=dx,\, v=\int dv=\int \cos x\, dx=\sin x\\ &=x\sin x-\int \sin x\, dx &&\\ &=x\sin x+\cos x +c && \end{align*}\] The general solution is \(y=\ln|x\sin x+\cos x +c|\).
Last edited