Integration by Substitution |
Integration by substitution is a rule of integration which is also known as \(u\)-substitution or change of variables.
The substitution rule/ \(u\)-substitution: If \(f\) is a continuous function on an interval \(I\) and \(u=g(x)\) is a differentiable function whose range is inside \(I\) where \(g'\) is continuous, then
\[\displaystyle\int f(g(x)) g'(x) \,dx= \int f(u) \,du. \]
Example.
Evaluate \(\displaystyle\int xe^{x^2} \,dx\).
Solution.
Let \(u=x^2\). Then \(du=2x dx\) and \(x dx=\frac{1}{2}du\).
\[\begin{align*}
\int xe^{x^2} \,dx &= \int e^{x^2} x\,dx &\\
&= \int e^u \frac{1}{2}du & (\text{By the $u$-substitution) }\\
&= \frac{1}{2}\int e^u \,du & \\
&= \frac{e^u}{2}+C &\\
&= \frac{e^{x^2}}{2}+C &
\end{align*}\]
Example.
Evaluate \(\displaystyle\int \tan x \,dx\).
Solution.
\[\begin{align*}
\int \tan x \,dx &= \int \frac{\sin x}{\cos x}\,dx &\\
&= \int \frac{1}{u} (-du) &(\text{Let } u=\cos x. \text{ Then } du=-\sin x \,dx\implies \sin x \,dx=-du )\\
&= -\int \frac{1}{u} \,du & \\
&= -\ln|u|+C & \\
&= \ln \left(\frac{1}{|u|} \right) +C & \\
&= \ln \left(\frac{1}{|\cos x|} \right) +C & \\
&= \ln (|\sec x|) +C &
\end{align*}\]
Example.
Evaluate \(\displaystyle\int_0^{\sqrt{5}} \frac{2x}{\sqrt{x^2+4}} \,dx\).
Solution.
First we do the corresponding indefinite integral:
\[\begin{align*}
\int \frac{2x}{\sqrt{x^2+4}} \,dx
&= \int \frac{du}{\sqrt{u}} &(\text{Let } u=x^2+4. \text{ Then } du=2x \,dx )\\
&= 2\sqrt{u} +C & \\
&= 2\sqrt{x^2+4} +C &
\end{align*}\]
Then
\[ \displaystyle\int_0^{\sqrt{5}} \frac{2x}{\sqrt{x^2+4}} \,dx
= \left. 2\sqrt{x^2+4} \right\vert_0^{\sqrt{5}}
=2\sqrt{(\sqrt{5})^2+4}-2\sqrt{4}=6-4=2.\]
The preceding definite integral can also be evaluated by the following substitution rule/ \(u\)-substitution for definite integrals:
\[\displaystyle\int_a^b f(g(x)) g'(x) \,dx= \int_{g(a)}^{g(b)} f(u) \,du. \]
Note that when \(x=a\), \(u=g(a)\) and when \(x=b\), \(u=g(b)\).
Example.
Evaluate \(\displaystyle\int_0^{\sqrt{5}} \frac{2x}{\sqrt{x^2+4}} \,dx\).
Solution.
We substitute \(u=x^2+4\) as before. Then \(du=2x \,dx\). When \(x=0\), \(u=4\) and when \(x=\sqrt{5}\), \(u=9\).
\[\begin{align*}
\int_0^{\sqrt{5}} \frac{2x}{\sqrt{x^2+4}} \,dx
&= \int_4^9 \frac{du}{\sqrt{u}} \\
&= \left. 2\sqrt{u} \right\vert_4^9 \\
&= 2\sqrt{9}-2\sqrt{4} \\
&= 2
\end{align*}\]
Last edited