Improper Integrals |
An integral \(\displaystyle \int_a^b f(x) \,dx\) is called an improper integral if
Infinite Intervals:
Example.
Evaluate \(\displaystyle \int_0^{\infty} \frac{dx}{x^2+1}\) and \(\displaystyle \int_{-\infty}^{\infty} \frac{dx}{x^2+1}\).
Solution.
\[\begin{align*}
\int_0^{\infty} \frac{dx}{x^2+1} &=\lim_{t\to \infty} \int_0^t \frac{dx}{x^2+1}\\
&=\lim_{t\to \infty} \left.\tan^{-1}x \right|_0^t \\
&=\lim_{t\to \infty} \left( \tan^{-1}t - \tan^{-1}0 \right)\\
&=\lim_{t\to \infty} \tan^{-1}t\\
&=\frac{\pi}{2}.
\end{align*}\]
Similarly,
\[\begin{align*}
\int_{-\infty}^0 \frac{dx}{x^2+1} &=\lim_{t\to -\infty} \int_t^0 \frac{dx}{x^2+1}\\
&=\lim_{t\to -\infty} \left.\tan^{-1}x \right|_t^0 \\
&=\lim_{t\to -\infty} \left(-\tan^{-1}t \right)\\
&=\frac{\pi}{2}.
\end{align*}\]
Note that the preceding integral can also be obtained by observing the symmetry of the function
\(f(x)=\displaystyle\frac{1}{x^2+1}\). Since both \(\displaystyle\int_{-\infty}^0 \frac{dx}{x^2+1}\) and
\(\displaystyle\int_0^{\infty} \frac{dx}{x^2+1}\) are convergent,
\[ \int_{-\infty}^{\infty} \frac{dx}{x^2+1}
=\int_{-\infty}^0 \frac{dx}{x^2+1}+ \int_0^{\infty} \frac{dx}{x^2+1}=\frac{\pi}{2}+\frac{\pi}{2}=\pi. \]
Example.
For \(a >0\), show that \(\displaystyle \int_a^{\infty} \frac{1}{x^p} \,dx=\frac{a^{1-p}}{p-1}\) if \(p >1\) and
the integral is divergent if \(p\leq 1\).
Solution.
First note that
\[ \int \frac{1}{x^p}\,dx= \begin{cases}
\frac{x^{1-p}}{1-p} & \text{if } p\neq 1 \\
\ln x & \text{if } p=1.
\end{cases}
\]
If \( p=1\), then
\[ \int_a^{\infty} \frac{1}{x} \,dx
=\lim_{t\to \infty} \int_a^t \frac{1}{x}\,dx
=\lim_{t\to \infty} \left.\ln x \right|_a^t
=\lim_{t\to \infty} \left( \ln t - \ln a \right)
=\infty. \]
If \(p< 1\), then
\[ \int_a^{\infty} \frac{1}{x^p} \,dx
=\lim_{t\to \infty} \int_a^t \frac{1}{x^p}\,dx
=\lim_{t\to \infty} \left.\frac{x^{1-p}}{1-p} \right|_a^t
=\lim_{t\to \infty} \left( \frac{t^{1-p}}{1-p} - \frac{a^{1-p}}{1-p} \right)
=\infty \;(\text{as } 1-p>0). \]
Thus the integral is divergent if \(p\leq 1\). If \( p>1\), then
\[ \int_a^{\infty} \frac{1}{x^p} \,dx
=\lim_{t\to \infty} \int_a^t \frac{1}{x^p}\,dx
=\lim_{t\to \infty} \left.\frac{x^{1-p}}{1-p} \right|_a^t
=\lim_{t\to \infty} \left( \frac{t^{1-p}}{1-p} - \frac{a^{1-p}}{1-p} \right)
=0- \frac{a^{1-p}}{1-p} \;(\text{as } 1-p<0). \]
Infinite Discontinuities:
Example.
Show that \(\displaystyle\int_0^1 \ln x \,dx=-1\).
Solution. First note that \(\ln\) is continuous on \((0,1]\) and \(\ln\) has an infinite discontinuity at
\(0\) as \(\displaystyle \lim_{x\to 0^+} \ln x=- \infty\).
\[\begin{align*}
\int_0^1 \ln x \,dx &=\lim_{t\to 0^+} \int_t^1 \ln x \,dx\\
&=\lim_{t\to 0^+} \left. x\ln x-x \right|_t^1\\
&=\lim_{t\to 0^+} \left(-1-t\ln t+t \right)\\
&=-1-\lim_{t\to 0^+} t\ln t\\
&=-1-\lim_{t\to 0^+} \frac{\ln t}{\frac{1}{t}} \;\left(\frac{\infty}{\infty} \right)\\
&=-1-\lim_{t\to 0^+} \frac{\frac{1}{t}}{-\frac{1}{t^2}} \;\left(\text{by L'Hospital's Rule} \right)\\
&=-1+\lim_{t\to 0^+} t\\
&=-1.
\end{align*}\]
Example.
Show that \(\displaystyle\int_{-1}^1 \frac{dx}{x}\) is divergent.
Solution. First note that the fundamental theorem of calculus is not applicable here as the integrand
is not defined at \(0\). Consequently, the following is incorrect:
\[ \int_{-1}^1 \frac{dx}{x}=\left.\ln|x| \right\vert_{-1}^1=\ln|1|-\ln|-1|=0. \]
Note that \(\frac{1}{x}\) is continuous on \([-1,0)\cup (0,1]\) and it has an infinite discontinuity at \(0\)
as \(\displaystyle \lim_{x\to 0^+} \frac{1}{x}=\infty\).
\[\begin{align*}
\int_0^1 \frac{dx}{x} &=\lim_{t\to 0^+} \int_t^1 \frac{dx}{x}\\
&=\lim_{t\to 0^+} \left. \ln|x| \right|_t^1\\
&=\lim_{t\to 0^+} \left(0-\ln|t| \right)\\
&=\infty.
\end{align*}\]
Then \(\displaystyle\int_0^1 \frac{dx}{x}\) is divergent and consequently \(\displaystyle\int_{-1}^1 \frac{dx}{x}\) is divergent.
Comparison Test: Suppose that \(f\) and \(g\) are continuous and \( 0\leq g(x)\leq f(x)\) for all \(x\geq a\).
Example.
Use the Comparison Test to show that \(\displaystyle\int_1^{\infty} \frac{dx}{x^2+e^{-x}}\) is convergent.
Solution. For all \(x\geq 1\),
\[ 0\leq \frac{1}{x^2+e^{-x}}\leq \frac{1}{x^2}. \]
Now \(\displaystyle \int_1^{\infty} \frac{1}{x^2} \,dx\) is convergent by the integral p-test where \(p=2>1\).
By the Comparison Test, \(\displaystyle\int_1^{\infty} \frac{dx}{x^2+e^{-x}}\) is convergent.
Now we will see in the following how the choice of a bigger function matters: for all \(x\geq 1\),
\[ 0\leq \frac{1}{x^2+e^{-x}}\leq \frac{1}{e^{-x}}. \]
Now \(\displaystyle \int_1^{\infty} \frac{1}{e^{-x}} \,dx=\int_1^{\infty} e^x \,dx\) is divergent. Then we cannot
apply the Comparison Test.
Last edited