Average Value of a Function |
If \(f\) is a continuous function on \([a,b]\), then the average value \(f_{ave}\) of \(f\) over \([a,b]\) is given by \[\boxed{f_{ave}=\frac{1}{b-a}\int_a^b f(x)\,dx}\]
The Mean Value Theorem for Integrals:
If \(f\) is a continuous function on \([a,b]\), then there is at least one number \(c\) in \([a,b]\) such that
\(f(c)=f_{ave}\), i.e.,
\[f(c)=\frac{1}{b-a}\int_a^b f(x)\,dx.\]
Example.
Find the average value \(f_{ave}\) of \(f(x)=x^2-2x+5\) over \([1,4]\) and find \(c\) in \([1,4]\) such that
\(f(c)=f_{ave}\).
Solution.
\[\begin{align*}
f_{ave} &=\frac{1}{4-1}\int_1^4 (x^2-2x+5)\,dx\\
&=\frac{1}{3}\left. \left( \frac{x^3}{3}-x^2+5x \right) \right\vert_1^4\\
&=\frac{1}{3}\left[ \left( \frac{64}{3}-16+20 \right)- \left( \frac{1}{3}-1+5 \right) \right]\\
&=\frac{21}{3}\\
&=7.
\end{align*}\]
\[f(c)=f_{ave} \implies c^2-2c+5=7 \implies c^2-2c-2=0 \implies c=1\pm \sqrt{3}.\]
Since \(1+\sqrt{3}\) is in \([1,4]\), \(c=1+\sqrt{3}\).
Last edited