Arc Length |
Suppose \(f\) is a continuously differentiable function on \([a,b]\), i.e., \(f'\) is continuous on \([a,b]\). Then the length \(L\) of the curve \(y=f(x)\) on \([a,b]\) is \[L=\int_a^b \sqrt{1+\left[ f'(x) \right]^2} \;dx=\int_a^b \sqrt{1+\left( \frac{dy}{dx} \right)^2} \;dx. \]
Example.
Prove that the circumference of a circle of radius \(r\) is \(2\pi r\).
Solution.
The circumference of a circle of radius \(r\) is twice the arc length \(L\) of the semicircle \(y=\sqrt{r^2-x^2}\),
\(-r\leq x\leq r\).
\[\begin{align*}
L=\;&\int_{-r}^r \sqrt{1+\left( \frac{dy}{dx} \right)^2} \;dx\\
=\; &\int_{-r}^r \sqrt{1+\left( \frac{-x}{\sqrt{r^2-x^2}} \right)^2} \;dx\\
=\; &\int_{-r}^r \sqrt{1+\frac{x^2}{r^2-x^2}} \;dx\\
=\; &\int_{-r}^r \frac{r}{\sqrt{r^2-x^2}} \;dx\\
=\; & \left. r\sin^{-1}\left( \frac{x}{r} \right) \right\vert_{-r}^r\\
=\; & r\sin^{-1}(1)-r\sin^{-1}(-1)\\
=\; & 2r\sin^{-1}(1)\\
=\; & 2r\frac{\pi}{2}\\
=\; & \pi r.
\end{align*}\]
Therefore the circumference of a circle of radius \(r\) is \(2L=2 \pi r\).
Example.
Find the arc length of the curve \(y=\ln(\sec x)\) on \(\left[0,\frac{\pi}{3}\right]\).
Solution.
By the chain rule,
\[\frac{dy}{dx}=\frac{1}{\sec x}\frac{d}{dx}\left( \sec x \right)=\frac{1}{\sec x} \sec x \tan x=\tan x.\]
The arc length of the curve \(y=\ln(\sec x)\) on \(\left[0,\frac{\pi}{3}\right]\) is
\[\begin{align*}
&\int_0^{\frac{\pi}{3}} \sqrt{1+\left( \frac{dy}{dx} \right)^2} \;dx\\
=\; &\int_0^{\frac{\pi}{3}} \sqrt{1+\tan^2 x} \;dx\\
=\; &\int_0^{\frac{\pi}{3}} \sqrt{\sec^2 x} \;dx\\
=\; &\int_0^{\frac{\pi}{3}} \sec x \;dx\\
=\; & \left. \ln|\sec x +\tan x| \right\vert_0^{\frac{\pi}{3}}\\
=\; & \ln\left\vert \sec\left( \frac{\pi}{3}\right) +\tan \left( \frac{\pi}{3}\right) \right\vert - \ln|\sec 0 +\tan 0|\\
=\; & \ln(2 +\sqrt{3}).
\end{align*}\]
The roles of \(x\) and \(y\) in the formula of arc length are switched when the graph is given by \(x=f(y)\)
from \(y=c\) to \(y=d\):
\[L=\int_c^d \sqrt{1+\left[ \frac{df}{dy} \right]^2} \;dy=\int_c^d \sqrt{1+\left( \frac{dx}{dy} \right)^2} \;dy. \]
Last edited