Inner Product Spaces |
Definition. Let \(V\) be a real vector space. An inner product on \(V\), denoted by \(\langle\cdot,\cdot\rangle\), is a function from \(V\times V\) to \(\mathbb R\) for which the following hold for all \(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\in V\) and \(c,d\in \mathbb R\):
A real vector space with an inner product defined on it is called a real inner product space.
Example.
Definition. Let \(\overrightarrow{u}\) and \(\overrightarrow{v}\) be in a real inner product space \(V\). The length or norm of \(\overrightarrow{v}\), denoted by \(\left\lVert\overrightarrow{v}\right\rVert\), is defined by \[\left\lVert\overrightarrow{v}\right\rVert=\sqrt{\langle\overrightarrow{v},\overrightarrow{v}\rangle}.\] \(\overrightarrow{v}\in V\) is a unit vector if \(\left\lVert\overrightarrow{v}\right\rVert=1\). The distance between \(\overrightarrow{u},\overrightarrow{v}\), denoted by \(\operatorname{d}(\overrightarrow{u},\overrightarrow{v})\), is defined by \[\operatorname{d}(\overrightarrow{u},\overrightarrow{v})=\left\lVert\overrightarrow{u}-\overrightarrow{v}\right\rVert.\] Theorem. The following are true for all vectors \(\overrightarrow{u}\) and \(\overrightarrow{v}\) of a real inner product space \(V\) and for all scalars \(c\) in \(\mathbb R\).
Example. Find the distance between \(f(x)=x\) and \(g(x)=x^2\) in the real inner product space \(C[0,1]\).
Solution.
\[\begin{align*}
\operatorname{d}(f,g)
=\left\lVert f-g\right\rVert
&=\sqrt{\langle f-g,f-g\rangle}\\
&= \sqrt{\int_0^1 (f(x)-g(x))^2\,dx}\\
&= \sqrt{\int_0^1 (x-x^2)^2\,dx}\\
&= \sqrt{\int_0^1 (x^2-2x^3+x^4)\,dx}\\
&= \frac{1}{\sqrt{30}}
\end{align*}\]
Definition.
Two vectors \(\overrightarrow{u}\) and \(\overrightarrow{v}\) of a real inner product space \(V\) are
orthogonal if \[\langle\overrightarrow{u},\overrightarrow{v}\rangle=0.\]
Example.
Show that \(f(x)=\sin(\pi x)\) and \(g(x)=\cos(\pi x)\) are orthogonal in the real inner product space \(C[0,1]\).
Solution.
\[\begin{align*}
\langle f,g\rangle &= \int_0^1 f(x)g(x)\,dx\\
&= \int_0^1 \sin(\pi x) \cos(\pi x) \,dx\\
&= \frac{1}{2}\int_0^1 \sin(2\pi x) \,dx\\
&= -\frac{1}{4\pi} \left. \cos(2\pi x) \right|_0^1\\
&= 0
\end{align*}\]
Since \(\langle f,g\rangle=0\), \(f(x)=\sin(\pi x)\) and \(g(x)=\cos(\pi x)\) are orthogonal in
the real inner product space \(C[0,1]\). Alternatively we can show it by Pythagorean Theorem.
Theorem.(Pythagorean Theorem) Two vectors \(\overrightarrow{u}\) and \(\overrightarrow{v}\) of a real inner product space \(V\) are orthogonal if and only if \(\left\lVert\overrightarrow{v}+\overrightarrow{v}\right\rVert^2 =\left\lVert\overrightarrow{u}\right\rVert^2+\left\lVert\overrightarrow{v}\right\rVert^2\).
Definition. The angle \(\theta\) between two vectors \(\overrightarrow{u}\) and \(\overrightarrow{v}\) of a real inner product space \(V\) is the angle in \([0,\pi]\) satisfying \[\langle\overrightarrow{u},\overrightarrow{v}\rangle =\left\lVert\overrightarrow{u}\right\rVert \left\lVert\overrightarrow{v}\right\rVert \cos \theta.\] Definition. Let \(W\) be a subspace of a real inner product space \(V\). A vector \(\overrightarrow{v}\in V\) is orthogonal to \(W\) if \(\langle\overrightarrow{v},\overrightarrow{w}\rangle =0\) for all \(\overrightarrow{w}\in W\). The orthogonal complement of \(W\), denoted by \(W^{\perp}\), is the set of all vectors in \(V\) that are orthogonal to \(W\), i.e., \[W^{\perp}=\{\overrightarrow{v}\in V \;|\; \langle\overrightarrow{v},\overrightarrow{w}\rangle =0 \text{ for all } \overrightarrow{w}\in W\}.\]
Theorem. Let \(W\) be a subspace of a real inner product space \(V\). Then
Example.
The real vector space \(P_1[0,1]\) of all polynomials of degree at most 1 on \([0,1]\) is a real inner product space
with the following inner product:
\[\langle f,g\rangle= \int_0^1 f(x)g(x)\,dx.\]
Find \(W^{\perp}\) for \(W=\operatorname{Span}\{x\}\).
Solution. First note that \(\{x\}\) is a basis of \(W=\operatorname{Span}\{x\}\). Let \(p(x)=a+bx \in W^{\perp}\). Then
\begin{align*}
0=\langle p,x\rangle &= \int_0^1 (a+bx)x \,dx\\
&= \left. \frac{ax^2}{2}+\frac{bx^3}{3} \right|_0^1\\
&= \frac{a}{2}+\frac{b}{3}.
\end{align*}
Then \(b=-\frac{3a}{2}\) and \(p(x)=a-\frac{3a}{2}x=\frac{a}{2}(2-3x)\). Thus
\[W^{\perp}=\left\lbrace \frac{a}{2}(2-3x)\;|\; a\in \mathbb R\right\rbrace=\operatorname{Span}\{2-3x\}.\]
We can verify that \((W^{\perp})^{\perp}=W\) and \(W\cap W^{\perp}=\{0\}\).
Definition.
A subset \(\{\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overrightarrow{v_k}\}\) of a real inner product space
\(V\) is called an orthogonal set if \(\langle\overrightarrow{v_i},\overrightarrow{v_j}\rangle=0\) for all distinct
\(i,j=1,2,\ldots,k\). Also \(\{\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overrightarrow{v_k}\}\) is called an
orthonormal set if it is an orthogonal set of unit vectors.
Theorem.
If \(\{\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overrightarrow{v_k}\}\) is an orthogonal set of
nonzero vectors in a real inner product space \(V\), then \(\{\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overrightarrow{v_k}\}\)
is linearly independent and consequently forms a basis of \(\operatorname{Span} \{\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overrightarrow{v_k}\}\).
Definition.
Let \(W\) be a subspace of a real inner product space \(V\). An orthogonal basis of \(W\) is a basis of
\(W\) that is an orthogonal set. Similarly an orthonormal basis of \(W\) is a basis of \(W\)
that is an orthonormal set.
Theorem.
Let \(W\) be a subspace of a real inner product space \(V\) and \(\{\overrightarrow{w_1},\overrightarrow{w_2},\ldots,\overrightarrow{w_k}\}\)
is an orthogonal basis of \(W\). If \(\overrightarrow{v}\in W\), then
\[\overrightarrow{v}=\frac{\langle\overrightarrow{v},\overrightarrow{w_1}\rangle}{\langle\overrightarrow{w_1},\overrightarrow{w_1}\rangle}\overrightarrow{w_1}
+\frac{\langle\overrightarrow{v},\overrightarrow{w_2}\rangle}{\langle\overrightarrow{w_2},\overrightarrow{w_2}\rangle}\overrightarrow{w_2}
+\cdots+
\frac{\langle\overrightarrow{v},\overrightarrow{w_k}\rangle}{\langle\overrightarrow{w_k},\overrightarrow{w_k}\rangle}\overrightarrow{w_k}.\]
Theorem.(Orthogonal Decomposition Theorem) Let \(W\) be a subspace of a real inner product space \(V\) and \(\overrightarrow{y}\in V\). Then \[\overrightarrow{y}=\overrightarrow{w}+\overrightarrow{z}\] for unique vectors \(\overrightarrow{w}\in W\) and \(\overrightarrow{z}\in W^{\perp}\). Moreover, if \(\{\overrightarrow{w_1},\overrightarrow{w_2},\ldots,\overrightarrow{w_k}\}\) is an orthogonal basis of \(W\), then \[\overrightarrow{w}=\frac{\langle\overrightarrow{y},\overrightarrow{w_1}\rangle}{\langle\overrightarrow{w_1},\overrightarrow{w_1}\rangle}\overrightarrow{w_1} +\frac{\langle\overrightarrow{y},\overrightarrow{w_2}\rangle}{\langle\overrightarrow{w_2},\overrightarrow{w_2}\rangle}\overrightarrow{w_2} +\cdots+ \frac{\langle\overrightarrow{y},\overrightarrow{w_k}\rangle}{\langle\overrightarrow{w_k},\overrightarrow{w_k}\rangle}\overrightarrow{w_k} \text{ and } \overrightarrow{z}=\overrightarrow{y}-\overrightarrow{w}.\]
Definition.
Let \(W\) be a subspace of a real inner product space \(V\). Each vector \(\overrightarrow{y}\in V\) can be uniquely
written as \(\overrightarrow{y}=\overrightarrow{w}+\overrightarrow{z}\)
where \(\overrightarrow{w}\in W\) and \(\overrightarrow{z}\in W^{\perp}\). The unique vector \(\overrightarrow{w}\in W\)
is called the orthogonal projection of \(\overrightarrow{y}\) onto \(W\) and it is denoted by
\(\operatorname{proj}_W \overrightarrow{y}\).
Corollary.
Let \(W\) be a subspace of a real inner product space \(V\) with an orthonormal basis
\(\{\overrightarrow{w_1},\overrightarrow{w_2},\ldots,\overrightarrow{w_k}\}\). Then for each \(\overrightarrow{y}\in V\),
\[\operatorname{proj}_W \overrightarrow{y}=
\langle\overrightarrow{y},\overrightarrow{w_1}\rangle \overrightarrow{w_1}
+\langle\overrightarrow{y},\overrightarrow{w_2}\rangle \overrightarrow{w_2}
+\cdots+ \langle\overrightarrow{y},\overrightarrow{w_k}\rangle \overrightarrow{w_k}.\]
Theorem.(Best Approximation Theorem)
Let \(W\) be a subspace of a real inner product space \(V\) and \(\overrightarrow{b}\in V\). Then
\[\min_{\overrightarrow{w}\in W}\left\lVert\overrightarrow{b}-\overrightarrow{w}\right\rVert
=\left\lVert\overrightarrow{b}-\operatorname{proj}_W \overrightarrow{b}\right\rVert.\]
Theorem.(Gram-Schmidt Process) Let \(W\) be a subspace of a real inner product space \(V\) with a basis \(\{\overrightarrow{w_1},\overrightarrow{w_2},\ldots,\overrightarrow{w_k}\}\). There is an orthogonal basis \(\{\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overrightarrow{v_k}\}\) of \(W\) where \[\overrightarrow{v_1}=\overrightarrow{w_1} \text{ and } \overrightarrow{v_i}=\overrightarrow{w_i} -\sum_{j=1}^{i-1} \frac{\langle\overrightarrow{w_i},\overrightarrow{v_j}\rangle}{\langle\overrightarrow{v_j},\overrightarrow{v_j}\rangle} \overrightarrow{v_j}, \; i=2,3,\ldots,k.\] Moreover, \(\operatorname{Span} \{\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overrightarrow{v_i}\} =\operatorname{Span} \{\overrightarrow{w_1},\overrightarrow{w_2},\ldots,\overrightarrow{w_i}\}\) for \(i=1,2,\ldots,k\).
Example Consider the real inner product space \(C[0,1]\) with the following inner product: \[\langle f,g\rangle= \int_0^1 f(x)g(x)\,dx.\]
Solution.
Last edited