Echelon Forms |
The leading entry of a row of a matrix is the left-most nonzero entry of the row.
Definition.
An \(m\times n\) matrix \(A\) is in echelon form (or REF=row echelon form) if
\(A\) is in reduced echelon form (or RREF=reduced row echelon form) if it satisfies two additional conditions:
Example.
Definition.
A pivot position in a matrix \(A\) is a position of a leading 1 in the RREF of \(A\) and corresponding
column is a pivot column. A pivot is a nonzero number in a pivot position of \(A\) that is used
to create zeros below it in Gaussian elimination.
Example.
Pivot positions of the last matrix are \((1,1)\), \((2,3)\), and \((3,4)\).
The Gaussian elimination or row reduction algorithm to get the REF of a matrix is explained
by the following example:
Example.
\(A=\left[\begin{array}{rrrrr}0&3&-6&5&-5\\3&-7&8&-7&9\\3&-9&12&-9&15 \end{array}\right]\)
To get RREF start with the right-most pivot, make it 1 by scaling, and then create zeros above it by row replacements. Repeat it for the rest of the pivots. \[\left[\begin{array}{rrrrr} \boxed{3}&-9&12&-9&15\\ 0&\boxed{2}&-4&2&-6\\ 0&0&0&\boxed{2}&4 \end{array} \right] \xrightarrow{\frac{1}{2}R_3} \left[\begin{array}{rrrrr} \boxed{3}&-9&12&-9&15\\ 0&\boxed{2}&-4&2&-6\\ 0&0&0&\boxed{1}&2 \end{array} \right] %\xrightarrow[-2R_3+R_2]{9R_3+R_1} \xrightarrow{\substack{\;\;\;9R_3+R_1\\ -2R_3+R_2}} \left[\begin{array}{rrrrr} \boxed{3}&-9&12&0&33\\ 0&\boxed{2}&-4&0&-10\\ 0&0&0&\boxed{1}&2 \end{array} \right] \] \[\xrightarrow{\frac{1}{2}R_2} \left[\begin{array}{rrrrr} \boxed{3}&-9&12&0&33\\ 0&\boxed{1}&-2&0&-5\\ 0&0&0&\boxed{1}&2 \end{array} \right] \xrightarrow{9R_2+R_1} \left[\begin{array}{rrrrr} \boxed{3}&0&-6&0&-12\\ 0&\boxed{1}&-2&0&-5\\ 0&0&0&\boxed{1}&2 \end{array} \right] \xrightarrow{\frac{1}{3}R_1} \left[\begin{array}{rrrrr} \boxed{1}&0&-2&0&-4\\ 0&\boxed{1}&-2&0&-5\\ 0&0&0&\boxed{1}&2 \end{array} \right] (\text{RREF}) \]
Remark. The above algorithm to get RREF is called Gauss-Jordan elimination. The RREF of \(A\) is unique as it does not depend on the elementary row operations applied to \(A\).
Steps to solve a linear system \(A\overrightarrow{x}=\overrightarrow{b}\) (Gaussian elimination):
Example. \[\begin{eqnarray*} \begin{array}{rcrcrcrcr} x_1&-&3x_2 &&&+&2x_4&=&1\\ 2x_1&-&6x_2 &+&x_3&+&10x_4&=&0\\ -x_1&+&3x_2 &+&x_3&+&4x_4&=&-3 \end{array} \end{eqnarray*}\] We find the RREF of the augmented matrix: \[\left[\begin{array}{rrrrr} \boxed{1}&-3&0&2&1\\ 2&-6&1&10&0\\ -1&3&1&4&-3 \end{array} \right] \xrightarrow[R_1+R_3]{-2R_1+R_2} \left[\begin{array}{crcrr} \boxed{1}&-3&0&2&1\\ 0&0&\boxed{1}&6&-2\\ 0&0&1&6&-2 \end{array} \right] \xrightarrow{-R_2+R_3} \left[\begin{array}{crcr|r} \boxed{1}&-3&0&2&1\\ 0&0&\boxed{1}&6&-2\\ 0&0&0&0&0 \end{array} \right] \] Corresponding system is \[\begin{eqnarray*} \begin{array}{rcrcrcrcr} x_1&-&3x_2 &&&+&2x_4&=&1\\ && &&x_3&+&6x_4&=&-2\\ && &&&&0&=&0 \end{array} \end{eqnarray*}\] where \(x_1\) and \(x_3\) are basic variables (for pivot columns) and \(x_2\) and \(x_4\) are free variables (for non-pivot columns). \[\begin{eqnarray*} \begin{array}{rcl} x_1&=&1+3x_2-2x_4\\ x_2&=&\text{free}\\ x_3&=&-2-6x_4\\ x_4&=&\text{free} \end{array} \end{eqnarray*}\] The solution set is \(\{(1+3s-2t,s,-2-6t,t)\; |\; s,t\in \mathbb R\}\). If we solve the corresponding matrix equation \(A\overrightarrow{x}=\overrightarrow{b}\), the solution set is \[\left\lbrace \left[\begin{array}{r}1+3s-2t\\ s\\ -2-6t\\ t \end{array} \right] \; |\; s,t\in \mathbb R \right\rbrace =\left\lbrace \left[\begin{array}{r}1\\ 0\\ -2\\ 0 \end{array} \right] +s \left[\begin{array}{r}3\\ 1\\ 0\\ 0 \end{array} \right] +t \left[\begin{array}{r}-2\\ 0\\ -6\\ 1 \end{array} \right] \; |\; s,t\in \mathbb R \right\rbrace.\]
Possibilities of solutions of \(A\overrightarrow{x}=\overrightarrow{b}\) from the RREF:
Last edited