Basis and Dimension |
Definition. A basis of a nontrivial subspace \(S\) of \(\mathbb R^n\) is a subset \(B\) of \(S\) such that
We define the basis of the trivial subspace \(\{\overrightarrow{0}\}\) to be \(B=\varnothing\). The number of vectors
in a basis \(B\) is the dimension of \(S\) denoted by \(\dim(S)\) or \(\dim S\).
Example.
Now we present some important theorems regarding bases of a subspace of \(\mathbb R^n\).
Theorem.(Unique Representation Theorem)
Let \(S\) be a subspace of \(\mathbb R^n\). Then \(B=\{\overrightarrow{b_1},\overrightarrow{b_2},\ldots,\overrightarrow{b_k}\}\)
is a basis of \(S\) if and only if each vector \(\overrightarrow{v}\) of \(S\) is a unique linear combination of
\(\overrightarrow{b_1},\overrightarrow{b_2},\ldots,\overrightarrow{b_k}\),
i.e.,
\(\overrightarrow{v}=c_1\overrightarrow{b_1}+c_2\overrightarrow{b_2}+\cdots+c_k\overrightarrow{b_k}\) for unique scalars
\(c_1,c_2,\ldots,c_k\).
Theorem.(Reduction Theorem) Let \(S\) be a subspace of \(\mathbb R^n\). If a set \(B=\{\overrightarrow{b_1},\overrightarrow{b_2},\ldots,\overrightarrow{b_k}\}\) of vectors of \(S\) spans \(S\), then either \(B\) is a basis of \(S\) or a subset of \(B\) is a basis of \(S\).
Similarly we can prove the following:
Theorem.(Extension Theorem)
Let \(S\) be a subspace of \(\mathbb R^n\). If a set \(B=\{\overrightarrow{b_1},\overrightarrow{b_2},\ldots,\overrightarrow{b_k}\}\)
of vectors of \(S\) is linearly independent, then either \(B\) is a basis of \(S\) or a superset of \(B\) is a basis of
\(S\).
Example.
Use Reduction Theorem to find a basis of \(\operatorname{CS}\left(A\right)\) for \(A=\left[\begin{array}{rrrr}
1&2&3&4\\
1&3&5&8\\
1&2&4&7\end{array} \right]\).
Solution.
Write \(A=[\overrightarrow{a_1}\:\overrightarrow{a_2}\:\overrightarrow{a_3}\:\overrightarrow{a_4}]\) and
\(B=\{\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},\overrightarrow{a_4} \}\). Then
\(\operatorname{CS}\left(A\right)=\operatorname{Span} S\). Verify that \(\overrightarrow{a_4}=-\overrightarrow{a_1}-2\overrightarrow{a_2}+3\overrightarrow{a_3}\) (exercise).
Then \(B\) is not linear independent and
\[\operatorname{CS}\left(A\right)=\operatorname{Span} (B)= \operatorname{Span} \{\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},\overrightarrow{a_4} \} = \operatorname{Span} \{\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}\}.\]
Verify that \(\{\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}\}\) is linearly independent.
Thus \(\{\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}\}\) is a basis of \(\operatorname{CS}\left(A\right)\).
Definition.
The rank of a matrix \(A\), denoted by \(\operatorname{rank}(A)\), is the dimension of its column space, i.e.,
\(\operatorname{rank}(A)=\dim(\operatorname{CS}\left(A\right))\).
Theorem.
The pivot columns of a matrix \(A\) form a basis for \(\operatorname{CS}\left(A\right)\) and \(\operatorname{rank}(A)\)
is the number of pivot columns of \(A\).
Remark. If \(R\) is the RREF of \(A\), then \(\operatorname{CS}\left(A\right)\neq \operatorname{CS}\left(R\right)\) in general. Consider \(A=\left[\begin{array}{cc} 1&2\\1&2\end{array} \right]\). Then \(R=\text{RREF}(A)=\left[\begin{array}{cc} 1&2\\0&0\end{array} \right]\) and \(\operatorname{CS}\left(A\right)=\operatorname{Span}\left\lbrace \left[\begin{array}{r}1\\1 \end{array} \right] \right\rbrace \neq \operatorname{Span}\left\lbrace \left[\begin{array}{r}1\\0 \end{array} \right] \right\rbrace =\operatorname{CS}\left(R\right)\).
Example.
Find \(\operatorname{rank}(A)\) and a basis of \(\operatorname{CS}\left(A\right)\) for
\(A=\left[\begin{array}{rrrr}
1&2&3&4\\
1&3&5&8\\
1&2&4&7\end{array} \right]\).
Solution.
\[A=\left[\begin{array}{rrrr}
\boxed{1}&2&3&4\\
1&3&5&8\\
1&2&4&7\end{array} \right]
\xrightarrow[-R_1+R_3]{-R_1+R_2}
\left[\begin{array}{rrrr}
\boxed{1}&2&3&4\\
0&\boxed{1}&2&4\\
0&0&\boxed{1}&3 \end{array} \right] (REF)\]
Since \(A\) has 3 pivot columns \(\overrightarrow{a_1}\), \(\overrightarrow{a_2}\), and \(\overrightarrow{a_3}\),
\(\operatorname{rank}(A)=3\) and a basis of \(\operatorname{CS}\left(A\right)\) is
\(\{\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3} \},\)
\[\text{i.e., } \left\lbrace
\left[\begin{array}{r} 1\\ 1\\1 \end{array} \right],
\left[\begin{array}{r} 2\\3\\2 \end{array} \right],
\left[\begin{array}{r} 3\\ 5\\4 \end{array} \right] \right\rbrace.\]
Definition.
The nullity of a matrix \(A\), denoted by \(\operatorname{nullity}(A)\), is the dimension of its null space, i.e.,
\(\operatorname{nullity}(A)=\operatorname{dim}(\operatorname{NS}(A))\).
Theorem.
\(\operatorname{nullity}(A)\) is the number of non-pivot columns of \(A\).
Remark. The non-pivot columns of \(A\) do not form a basis for \(\operatorname{NS}(A)\).
Example.
Find \(\operatorname{nullity}(A)\) and a basis of \(\operatorname{NS}(A)\) for
\(A=\left[\begin{array}{rrrr}
1&2&3&4\\
1&3&5&8\\
1&2&4&7\end{array} \right]\).
Solution.
\[A=\left[\begin{array}{rrrr}
1&2&3&4\\
1&3&5&8\\
1&2&4&7\end{array} \right]
\longrightarrow
\left[\begin{array}{rrrr}
\boxed{1}&0&0&-1\\
0&\boxed{1}&0&-2\\
0&0&\boxed{1}&3 \end{array} \right] (RREF)\]
Since \(A\) has one non-pivot column, \(\operatorname{nullity}(A)=1\). To find a basis of \(\operatorname{NS}(A)\),
we solve \(A\overrightarrow{x}=\overrightarrow{0}\) which becomes
\[\begin{eqnarray*}
\begin{array}{rcrcrcrcr}
x_1&& &&&-&x_4&=&0\\
&& x_2 &&&-&2x_4&=&0\\
&& &&x_3&+&3x_4&=&0\\
\end{array}
\end{eqnarray*}\]
where \(x_1,x_2\) and \(x_3\) are basic variables and \(x_4\) is a free variable.
\[\begin{eqnarray*}
\begin{array}{rcl}
x_1&=&x_4\\
x_2&=&2x_4\\
x_3&=&-3x_4\\
x_4&=&\text{free}
\end{array}
\end{eqnarray*}\]
\[\operatorname{NS}(A)=\left\lbrace \left[\begin{array}{r} x_4\\2x_4\\ -3x_4\\x_4 \end{array} \right] \; |\; x_4\in \mathbb R \right\rbrace
=\left\lbrace x_4 \left[\begin{array}{r} 1\\2\\ -3\\1 \end{array} \right] \; |\; x_4\in \mathbb R \right\rbrace
=\operatorname{Span}\left\lbrace \left[\begin{array}{r} 1\\ 2\\ -3\\1 \end{array} \right] \right\rbrace.\]
Thus a basis of \(\operatorname{NS}(A)\) is
\[\left\lbrace \left[\begin{array}{r} 1\\ 2\\ -3\\1 \end{array} \right] \right\rbrace\]
because it is linearly independent and spans \(\operatorname{NS}(A)\).
Theorem.(Rank-Nullity Theorem) For an \(m\times n\) matrix \(A\), \[\operatorname{rank}(A)+\operatorname{nullity}(A)=n.\]
Example. If \(A\) is a \(4\times 5\) matrix with rank \(3\), then by the Rank-Nullity Theorem \[\operatorname{nullity}(A)=n-\operatorname{rank}(A)=5-3=2.\]
Now we investigate the relation of \(\operatorname{rank}(A)\) with the dimension of the row space of \(A\).
Definition.
Each row of an \(m\times n\) matrix \(A\) is called a row vector which can be identified with a (column) vector
in \(\mathbb R^n\). The row space of an \(m\times n\) matrix \(A=\left[\begin{array}{c}\overrightarrow{r_1}\\ \overrightarrow{r_2}\\ \vdots\\ \overrightarrow{r_m} \end{array} \right]\),
denoted by \(\operatorname{RS}(A)\) or \(\operatorname{Row}A\), is the span of its row vectors:
\[\operatorname{RS}(A)=\operatorname{Span}\{\overrightarrow{r_1},\overrightarrow{r_2},\ldots,\overrightarrow{r_m}\}.\]
Remark.
Example. Consider \(A=\left[\begin{array}{rrrr}2&0&1&0\\ 0&1&-1&1\\ 2&1&0&1 \end{array} \right]\). Write \(A=\left[\begin{array}{r}\overrightarrow{r_1}\\ \overrightarrow{r_2}\\ \overrightarrow{r_3} \end{array} \right]\), where \(\overrightarrow{r_1}=[2,0,1,0],\; \overrightarrow{r_2}=[0,1,-1,1],\; \overrightarrow{r_3}=[2,1,0,1].\) Then \(\operatorname{RS}(A)=\operatorname{CS}\left(A^T\right)=\operatorname{Span}\{\overrightarrow{r_1},\overrightarrow{r_2},\overrightarrow{r_3}\}\) is a subspace of \(\mathbb R^4\). \[A=\left[\begin{array}{rrrr}2&0&1&0\\ 0&1&-1&1\\ 2&1&0&1 \end{array} \right] %{\substack{-R1+R3\\-R2+R3}} \longrightarrow \left[\begin{array}{rrrr}\boxed{2}&0&1&0\\ 0&\boxed{1}&-1&1\\ 0&0&0&0 \end{array} \right]=R \;(\mbox{REF})\] Note that \(\overrightarrow{r_3}=\overrightarrow{r_1}+\overrightarrow{r_2}\) in \(A\), but not in \(R\). Since the row 3 of \(R\) is \(-\overrightarrow{r_1}-\overrightarrow{r_2}+\overrightarrow{r_3}\) in \(A\), the span of the rows of \(R\) is the same as that of \(A\), i.e., \(\operatorname{RS}(R)=\operatorname{RS}(A)\). Note that the nonzero rows of \(B\) are linearly independent and span \(\operatorname{RS}(R)=\operatorname{RS}(A)\), i.e., they form a basis of \(\operatorname{RS}(R)=\operatorname{RS}(A)\).
Definition.
The row rank of a matrix \(A\) is the dimension of its row space.
Theorem.
Let \(A\) be an \(m\times n\) matrix with REF \(R\). Then the nonzero rows of \(R\) form a basis for
\(\operatorname{RS}(R)=\operatorname{RS}(A)\) and the row rank of \(A\) = the (column) rank of \(A\) = the number of pivot
positions of \(A\).
Remark.
For an \(m\times n\) matrix \(A\), \(0 \leq \operatorname{rank}(A)\leq \min \{m,n \}\).
Example.
Last edited